Complutense University Library

Internal fundamental sequences and approximative retracts

Laguna, V. F. and Rodríguez Sanjurjo, José Manuel (1984) Internal fundamental sequences and approximative retracts. Topology and its Applications, 17 (2). pp. 189-197. ISSN 0166-8641

[img] PDF
Restricted to Repository staff only until 31 December 2020.

579kB

Official URL: http://www.sciencedirect.com/science/article/pii/0166864184900415

View download statistics for this eprint

==>>> Export to other formats

Abstract

We introduce the notion of internal fundamental sequence and prove that any shape morphism from an arbitrary compactum X to an internally movable compactum Y is induced by an internal fundamental sequence. We use this special kind of fundamental sequences to give characterizations and some properties of AANRc-sets and AANR,-sets. The paper ends with a section devoted to internal FANR’s.


Item Type:Article
Uncontrolled Keywords:Shape theory
Subjects:Sciences > Mathematics > Geometry
Sciences > Mathematics > Topology
ID Code:17179
References:

S. Bogatyi, Approximate and fundamental retracts, Mat. Sbornik 93 (135) (1974) 90-102. (Math. USSR Sbornik 22 (1974) 91-103).

K. Borsuk, Theory of Shape, (Monografie Matematycne 59, Polish Scientific Publishers, Warszawa 1975).

K. Borsuk, On a class of compacta, Houston J. IMath. 1 (1975) 1-13.

L. Boxer, Maps related to calmness, Topology Appl. 15 (1983) 11-17.

Z. Cerin, Surjective approximate absolute (neighborhood) retracts, Topology Proceedings 6 (1981) 5-27.

Z. Cerin, VP-e-movable and O-e-calm compacta and their images, Compositio klath. 45 (1981) 115-141.

Z. Cerin, ANR’s and AANR’s revisited, A talk presented at the Conference on Shape Theory and Geometric Topology, Dubrovnik, Yugoslavia, 1981.

M.H. Clapp, On a generalization of absolute neighborhood retracts, Fund. Math. 70 (1971) 117-l 30.

J. Dydak, On internally movable compacta, Bull. Acad. Polon. Sci. 27 (1979) 107-l 10.

J. Dydak and J. Segal, Shape theory: An introduction, (Lecture Notes in .Math. 688, Springer, Berlin 1978).

J. Dydak and J. Segal, Approximate Polyhedra and Shape Theory, Topology Proceedings 6 ( 198 1).

A. Grnurczyk, Approximate retracts and fundamental retracts. Colloq. Math. 23 (1971) 61-63.

A. Granas. Fixed point theorems for the approximative ANR’s, Bull. Acad. Polon. Sci. 16 (1968) 15-19.

S.T. Hu, Theory of Retracts (Wayne State Univ. Press. Detroit, 1965).

S. MardeGL On Borsuk’s shape theory for compact pairs, Bull. Acad. Polon. Sci. 21 (1973) 1131-1136.

S. MardeSif, Approximate polyhedra. resolutions of maps and shape fibrations, Fund. Math. 114 (1981) 53-78.

S. MardeSiC and J. Segal, Shape Theory (North-Holland, Amsterdam, 1982).

H. Noguchi, A generalization of absolute neighborhood retracts, Kodai Math. Sem. Reports 1 (1953) X-22.

P. Patten, Refinable maps and generalized absolute neighborhood retracts, Topology Appl. 14 (1982) 183-188.

S. Spiei, Movability and uniform movability, Bull. Acad. Polon. Sci. 22 (1974) 43-45.

T. Watanabe. Approximative Shape Theory, to appear.

Deposited On:22 Nov 2012 12:38
Last Modified:07 Feb 2014 09:43

Repository Staff Only: item control page