E-Prints Complutense

Chemotactic collapse for the Keller-Segel model

Impacto

Descargas

Último año

Herrero, Miguel A. y Velázquez, J.J. L. (1996) Chemotactic collapse for the Keller-Segel model. Journal of Mathematical Biology, 35 (2). pp. 177-194. ISSN 0303-6812

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

307kB

URL Oficial: http://www.springerlink.com/content/n1f8vbefpr5g1jnu/


URLTipo de URL
http://www.springerlink.comEditorial


Resumen

This work is concerned with the system (S) {u(t)=Delta u-chi del(u del upsilon) for x is an element of Omega, t>0 Gamma upsilon(t)=Delta upsilon=Delta upsilon+(u-1) for x is an element of Omega, t>0 where Gamma; chi are positive constants and Omega is a bounded and smooth open set in IR(2). On the boundary delta Omega, we impose no-flux conditions: (N)partial derivative u/partial derivative n=partial derivative upsilon/partial derivative n=0 for x is an element of partial derivative Omega, t>0 Problem (S), (N) is a classical model to describe chemotaxis corresponding to a species of concentration u(x, t) which tends to aggregate towards high concentrations of a chemical that the species releases. When completed with suitable initial values at t=0 for u(x, t), upsilon(x, t), the problem under consideration is known to be well posed, locally in time. By means of matched asymptotic expansions techniques, we show here that there exist radial solutions exhibiting chemotactic collapse. By this we mean that u(r, t)-->A delta(y) as t-->T for some T <infinity, where A is the total concentration of the species.


Tipo de documento:Artículo
Palabras clave:Chemotaxis; advection-diffusion systems; matched asymptotic expansions; blow-up; asymptotic behaviour; equations
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:17184
Depositado:23 Nov 2012 11:53
Última Modificación:07 Feb 2014 09:43

Descargas en el último año

Sólo personal del repositorio: página de control del artículo