E-Prints Complutense

Quasiaspherical knots with infinitely many ends



Último año

Montesinos Amilibia, José María y González Acuña, Francisco Javier (1983) Quasiaspherical knots with infinitely many ends. Commentarii Mathematici Helvetici , 58 (2). pp. 257-263. ISSN 0010-2571

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.springerlink.com/content/q3x151q700053g45/

URLTipo de URL


A smooth n-knot K in Sn+2 is said to be quasiaspherical if Hn+1(U)=0, where U is the universal cover of the exterior of K. Let G be the group of K and H the subgroup generated by a meridian. Then (G,H) is said to be unsplittable if G does not have a free product with amalgamation decomposition A∗FB with F finite and H contained in A. The authors prove that K is quasiaspherical if and only if (G,H) is unsplittable. If the group of K has a finite number of ends, then K is quasiaspherical and it was conjectured by the reviewer [J. Pure Appl. Algebra 20 (1981), no. 3, 317–324; MR0604323 (82j:57019)] that the converse was true. The authors give a very nice and useful method of constructing knots in Sn+2 and apply this method to produce counterexamples to the conjecture.

Tipo de documento:Artículo
Palabras clave:quasiaspherical n-knot; knot group; free product with amalgamation over a finite group; HNN-extension over a finite subgroup; infinitely many ends
Materias:Ciencias > Matemáticas > Topología
Código ID:17190
Depositado:23 Nov 2012 11:59
Última Modificación:23 Nov 2012 11:59

Descargas en el último año

Sólo personal del repositorio: página de control del artículo