E-Prints Complutense

Singularity patterns in a chemotaxis model



Último año

Herrero, Miguel A. y Velázquez, J.J. L. (1996) Singularity patterns in a chemotaxis model. Mathematische Annalen, 306 (1). pp. 583-623. ISSN 0025-5831

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.springerlink.com/content/k583061277m26u8x/

URLTipo de URL


The authors study a chemotactic model under certain assumptions and obtain the existence of a class of solutions which blow up at the center of an open disc in finite time. Such a finite-time blow-up of solutions implies chemotactic collapse, namely, concentration of species to form sporae. The model studied is the limiting case of a basic chemotactic model when diffusion of the chemical approaches infinity, which has the form ut=Δu−χ(uv), 0=Δv+(u−1), on ΩR2, where Ω is an open disc with no-flux (homogeneous Neumann) boundary conditions. The initial conditions are continuous functions u(x,0)=u0(x)≥0, v(x,0)=v0(x)≥0 for xΩ. Under these conditions, the authors prove there exists a radially symmetric solution u(r,t) which blows up at r=0, t=T<∞. A specific description of such a solution is presented. The authors also discuss the strong similarity between the chemotactic model they study and the classical Stefan problem.

Tipo de documento:Artículo
Palabras clave:Blow-up; equations; radial solutions; chemotactic collapse
Materias:Ciencias Biomédicas > Biología > Biomatemáticas
Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:17199
Depositado:26 Nov 2012 09:36
Última Modificación:07 Feb 2014 09:43

Descargas en el último año

Sólo personal del repositorio: página de control del artículo