Universidad Complutense de Madrid
E-Prints Complutense

An application of the Krein-Milman theorem to Bernstein and Markov inequalities



Último año

Muñoz-Fernández, Gustavo A. y Sarantopoulos, Yannis y Seoane-Sepúlveda, Juan B. (2008) An application of the Krein-Milman theorem to Bernstein and Markov inequalities. Journal of Convex Analysis, 15 (2). pp. 299-312. ISSN 0944-6532

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial: http://www.heldermann-verlag.de/jca/jca15/jca0740_b.pdf

URLTipo de URL


Given a trinomial of the form p(x) = ax(m) + bx(n) + c with a, b, c is an element of R, we obtain, explicitly, the best possible constant M.,,(x) in the inequality vertical bar p'(x)vertical bar <= M-m,M-n(x).parallel to p parallel to, where x is an element of [-1, 1] is fixed and parallel to p parallel to is the sup norm of p over [-1, 1]. This answers a question to an old problem, first studied by Markov, for a large family of trinomials. We obtain the mappings M-m,M-n(x) by means of classical convex analysis techniques, in particular, using the Krein-Milman approach.

Tipo de documento:Artículo
Palabras clave:Bernstein and Markov inequalies; trinomials; extreme points
Materias:Ciencias > Matemáticas > Análisis numérico
Código ID:17232
Depositado:28 Nov 2012 09:26
Última Modificación:25 Nov 2016 12:27

Descargas en el último año

Sólo personal del repositorio: página de control del artículo