Biblioteca de la Universidad Complutense de Madrid

On the problem of finding the full automorphism group of a compact Klein surface

Impacto



Cirre, F.J. y Gamboa, J. M. (2000) On the problem of finding the full automorphism group of a compact Klein surface. In Contribuciones Matemáticas. Homenaje al Prof. D. Joaquín Arregui Fernández. Universidad Complutense de Madrid, pp. 105-126. ISBN 84-7491-581-3

[img] PDF
Restringido a Sólo personal autorizado del repositorio

324kB


Resumen

The paper under review surveys most known results about the following problem: let $X$ be a compact topological surface of algebraic genus $p>1$, with or without boundary, orientable or not. How to calculate all groups acting as the full automorphism group of some structure of Klein surface having $X$ as underlying topological surface? It must be remarked that from Riemann's uniformization theorem, and since $\Aut(X)$ has no more than 168 $(p-1)$ automorphisms (including the orientation-reversing ones), this problem is of a finite nature. In practice this is an unaccessible task except for low values of $p$ or some extra conditions on the surfaces one is dealing with.


Tipo de documento:Sección de libro
Palabras clave:automorphism groups; n.e.c. group; algebraic equation; Klein surfaces
Materias:Ciencias > Matemáticas > Álgebra
Código ID:17249
Depositado:28 Nov 2012 10:13
Última Modificación:31 Mar 2016 11:09

Sólo personal del repositorio: página de control del artículo