Universidad Complutense de Madrid
E-Prints Complutense

Minimal plat representations of prime knots and links are not unique

Impacto

Descargas

Último año

Montesinos Amilibia, José María (1976) Minimal plat representations of prime knots and links are not unique. Canadian Journal of Mathematics-Journal Canadien de Mathématiques, 28 (1). pp. 161-167. ISSN 0008-414X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

527kB

URL Oficial: http://cms.math.ca/cjm/v28/cjm1976v28.0161-0167.pdf


URLTipo de URL
http://cms.math.ca/Editorial


Resumen

J. S. Birman [same J. 28 (1976), no. 2, 264–290] has shown that any two plat representations of a link in S3 are stably equivalent and that stabilization is a necessary feature of the equivalence for certain composite knots. She has asked whether all 2n-plat representations of a prime link are equivalent. The author provides a negative answer, by exhibiting an infinite collection of prime knots and links in S3 in which each element L has at least two minimal and inequivalent 6-plat representations. In addition, as an application of another result of Birman [Knots, groups and 3-manifolds (Papers dedicated to the memory of R. H. Fox), pp. 137–164, Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975], the 2-fold cyclic covering spaces of S3 branched over such links L form further examples of closed, orientable, prime 3-manifolds having inequivalent minimal Heegaard splittings, which were first constructed by Birman, F. González-Acuña and the author [Michigan Math. J. 23 (1976), no. 2, 97–103].


Tipo de documento:Artículo
Palabras clave:Topology of general 3-manifolds
Materias:Ciencias > Matemáticas > Geometría diferencial
Código ID:17266
Depositado:29 Nov 2012 09:54
Última Modificación:07 Feb 2014 09:44

Descargas en el último año

Sólo personal del repositorio: página de control del artículo