Universidad Complutense de Madrid
E-Prints Complutense

Heegaard splittings of prime 3-manifolds are not unique



Último año

Montesinos Amilibia, José María y González Acuña, Francisco Javier y Birman, Joan S. (1976) Heegaard splittings of prime 3-manifolds are not unique. Michigan Mathematical Journal, 23 (2). pp. 97-103. ISSN 0026-2285

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://projecteuclid.org/euclid.mmj/1029001657

URLTipo de URL


The authors construct an infinite family of prime homology 3-spheres of Heegaard genus 2, satisfying the following two non-uniqueness properties: (1) Each of the manifolds can be structured as the 2-fold cyclic branched cover over each of two inequivalent knots, one of which is a torus knot. (2) Each of the manifolds admits at least two equivalence classes of genus 2 Heegaard splittings. All of the manifolds are Seifert fiber spaces, the properties of which are used to prove (1). The non-uniqueness of Heegaard splittings is based on the work of the first author and H. M. Hilden [Trans. Amer. Math. Soc. 213 (1975), 315–352], who proved that for Heegaard genus 2 splittings of the 2-fold branched cyclic cover of the knot K, the equivalence class of the Heegaard splitting determines uniquely the knot type K. The authors then show that if Σp,q is the 2-fold cyclic branched cover of the torus knot (p,q), then Σp,q is also the 2-fold cyclic branched cover of a knot different from (p,q), and that Σp,q admits a Heegaard splitting of genus 2.

Tipo de documento:Artículo
Palabras clave:Topology of general 3-manifolds
Materias:Ciencias > Matemáticas > Topología
Código ID:17268
Depositado:29 Nov 2012 09:57
Última Modificación:07 Feb 2014 09:44

Descargas en el último año

Sólo personal del repositorio: página de control del artículo