Biblioteca de la Universidad Complutense de Madrid

On the minimum genus problem on bordered Klein surfaces

Impacto



Etayo Gordejuela, J. Javier y Martínez García, Ernesto (2012) On the minimum genus problem on bordered Klein surfaces. In Contribuciones matemáticas en honor a Juan Tarrés. UCM, Madrid , pp. 149-158. ISBN 978-84-695-4421-1




Resumen

The minimum genus problem consists in determining the minimum algebraic genus of a surface on which a viven group G acts. For cyclic groups G this problem on bordered Klein surfaces was solved in 1989. The next step is to fix the number of boundary components of the surface and to obtain the minimum algebraic genus, and so the minimum topological genus. It was achieved for cyclic groups of prime and prime-power order in the nineties. In this work the corresponding results for cyclic groups of order N=pq, where p and q are different odd primes, is obtained. There appear different results depending on the orientability of the surface. Finally we obtain general results when the number of boundary components is small, which are valid for any odd N.


Tipo de documento:Sección de libro
Palabras clave:Klein surfaces; algebraic genus; automorphisms of surfaces
Materias:Ciencias > Matemáticas > Álgebra
Código ID:17355
Depositado:10 Dic 2012 10:05
Última Modificación:10 Dic 2012 11:01

Sólo personal del repositorio: página de control del artículo