Biblioteca de la Universidad Complutense de Madrid

Extinction and positivity for a system of semilinear parabolic variational inequalities

Impacto

Friedman, Avner y Herrero, Miguel A. (1992) Extinction and positivity for a system of semilinear parabolic variational inequalities. Journal of Mathematical Analysis and Applications, 167 (1). pp. 167-175. ISSN 0022-247X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

356kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/0022247X92902448




Resumen

A simple model of chemical kinetics with two concentrations u and v can be formulated as a system of two parabolic variational inequalities with reaction rates v(p) and u(q) for te diffusion processes of u and v, respectively. It is shown that if pq < 1 and the initial values of u and v are “comparable” then at least one of the concentrations becomes extinct in finite time. On the other hand, for any p = q > 0 there are initial values for which both concentrations do not become extinct in any finite time.


Tipo de documento:Artículo
Palabras clave:Model of chemical kinetics with two concentrations
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:17417
Referencias:

S. N. ANTONCEV, On the localization of solutions of nonlinear degenerate elliptic and parabolic equations, Soviet Math. Dokl. 24 (1981), 420-424.

H. BREZIS AND A. FRIEDMAN, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math. 20 (1976), 82-97.

L. C. EVANS AND B. F. KNERR, Instantaneous shrinking of the support of nonnegative solutions to certain parabolic equations and variational inequalities, Illinois J. Much. 23(1979), 153-166.

A. FRIEDMAN, “Variational Principles and Free Boundary Problems,” Wiley, New York, 1982.

A. FRIEDMAN AND M. A. HERRERO, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987), 550-546.

M. A. HERRERO AND J. J. L. VELÁZQUEZ, Approaching an extinction point in semilinear heat equations with strong absorption, to appear.

A. S. KALASHNIKOV, The propagation of disturbances in problems of nonlinear heat conduction with absorption, U.S.S.R. Comput. Math. and Math. Phys. 14 (1974), 70-85.

Depositado:13 Dic 2012 09:41
Última Modificación:07 Feb 2014 09:47

Sólo personal del repositorio: página de control del artículo