Universidad Complutense de Madrid
E-Prints Complutense

Extinction and positivity for a system of semilinear parabolic variational inequalities

Impacto

Descargas

Último año

Friedman, Avner y Herrero, Miguel A. (1992) Extinction and positivity for a system of semilinear parabolic variational inequalities. Journal of Mathematical Analysis and Applications, 167 (1). pp. 167-175. ISSN 0022-247X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

356kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/0022247X92902448


URLTipo de URL
http://www.sciencedirect.comEditorial


Resumen

A simple model of chemical kinetics with two concentrations u and v can be formulated as a system of two parabolic variational inequalities with reaction rates v(p) and u(q) for te diffusion processes of u and v, respectively. It is shown that if pq < 1 and the initial values of u and v are “comparable” then at least one of the concentrations becomes extinct in finite time. On the other hand, for any p = q > 0 there are initial values for which both concentrations do not become extinct in any finite time.


Tipo de documento:Artículo
Palabras clave:Model of chemical kinetics with two concentrations
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:17417
Depositado:13 Dic 2012 09:41
Última Modificación:07 Feb 2014 09:47

Descargas en el último año

Sólo personal del repositorio: página de control del artículo