Biblioteca de la Universidad Complutense de Madrid

Modelos integrables bidimensionales con condiciones de contorno abiertas e invariancia bajo grupos cuánticos

Impacto



González Ruiz, Alejandro (2002) Modelos integrables bidimensionales con condiciones de contorno abiertas e invariancia bajo grupos cuánticos. [Tesis Doctoral]

[img] PDF
4MB


Resumen

En la memoria de tesis doctoral se hace un estudio sobre modelos de vértices y cadenas de espín bidimensionales exactamente integrables y con condiciones de contorno abiertas. Se encuentran soluciones de las ecuaciones de reflexion para diferentes modelos. En algunos casos estas soluciones son las mas generales. Posteriormente se relacionan las cadenas invariantes grupo cuantico con las trazas de markov. Se obtienen las cadenas invariantes suq(n) y chq(2) y los generadores del grupo cuantico en el limite del parametro espectral. Se generaliza el ansatz de bethe encajado y se resuelve el problema de autovalores de la cadena invariante suq(n). También se hace un estudio de las correcciones de tamaño finito. Se resuelve posteriormente el modelo t-j de superconductividad con condiciones abiertas. Lo mismo se hace con las cadenas asociadas a las algebras tipo an-1 con condiciones de contorno abiertas. Por ultimo se demuestra la propiedad de peso máximo para la cadena invariante suq(n) y el modelo t-j con invariacia splq(2,1). En las conclusiones se comenta la posible aplicación de los resultados obtenidos al problema de hofstadter y otros relacionados con condiciones abiertas.


Tipo de documento:Tesis Doctoral
Información Adicional:

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física Teórica II (Métodos Matemáticos de la Física), leída el 10-06-1994

Directores (o tutores):
NombreEmail del director (o tutor)
Vega, Héctor de la
Ibort Latre, Luis Alberto
Palabras clave:Física matemática
Materias:Ciencias > Física > Física matemática
Código ID:1820
Depositado:25 Oct 2004
Última Modificación:18 Mar 2011 09:34

Sólo personal del repositorio: página de control del artículo