Universidad Complutense de Madrid
E-Prints Complutense

On global Nash functions



Último año

Ruiz Sancho, Jesús María y Shiota, Masahiro (1994) On global Nash functions. Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 27 (1). pp. 103-124. ISSN 0012-9593

[img] PDF
Restringido a Sólo personal autorizado del repositorio


URL Oficial: http://archive.numdam.org/ARCHIVE/ASENS/ASENS_1994_4_27_1/ASENS_1994_4_27_1_103_0/ASENS_1994_4_27_1_103_0.pdf

URLTipo de URL


Let M superset-of R be a compact Nash manifold, and N (M) [resp. O(M)] its ring of global Nash (resp. analytic) functions. A global Nash (resp. analytic) set is the zero set of finitely many global Nash (resp. analytic) functions, and we have the usual notion of irreducible set. Then we say that separation holds for M if every Nash irreducible set is analytically irreducible. The main result of this paper is that separation holds if and only if every semialgebraic subset of M described by s global analytic inequalities can also be described by s global Nash inequalities. In passing, we also prove that when separation holds, every Nash function on a Nash set extends to a global Nash function on M.

Tipo de documento:Artículo
Palabras clave:Extension theorem; rings; separation problem; problem of equal complexities; Nash functions; number of inequalities; fans
Materias:Ciencias > Matemáticas > Geometria algebraica
Ciencias > Matemáticas > Teoría de conjuntos
Código ID:19927
Depositado:12 Feb 2013 17:12
Última Modificación:04 Sep 2018 17:36

Descargas en el último año

Sólo personal del repositorio: página de control del artículo