Universidad Complutense de Madrid
E-Prints Complutense

A continuous Hopfield network equilibrium points algorithm

Impacto

Descargas

Último año

Talavan, P. M. y Yáñez, Javier (2005) A continuous Hopfield network equilibrium points algorithm. Computers and Operations Research, 32 (8). pp. 2179-2196. ISSN 0305-0548

[img] PDF
Restringido a Sólo personal autorizado del repositorio

428kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0305054804000243


URLTipo de URL
http://www.sciencedirect.com/Editorial


Resumen

The continuous Hopfield network (CHN) is a classical neural network model. It can be used to solve some classification and optimization problems in the sense that the equilibrium points of a differential equation system associated to the CHN is the solution to those problems. The Euler method is the most widespread algorithm to obtain these CHN equilibrium points, since it is the simplest and quickest method to simulate complex differential equation systems. However, this method is highly sensitive with respect to initial conditions and it requires a lot of CPU time for medium or greater size CHN instances. In order to avoid these shortcomings, a new algorithm which obtains one equilibrium point for the CHN is introduced in this paper. It is a variable time-step method with the property that the convergence time is shortened; moreover, its robustness with respect to initial conditions will be proven and some computational experiences will be shown in order to compare it with the Euler method


Tipo de documento:Artículo
Palabras clave:Neural networks; continuous Hopfield network
Materias:Ciencias > Matemáticas > Estadística matemática
Código ID:20153
Depositado:27 Feb 2013 10:05
Última Modificación:07 Sep 2018 14:41

Descargas en el último año

Sólo personal del repositorio: página de control del artículo