Universidad Complutense de Madrid
E-Prints Complutense

The knot engulfing property of 3-manifolds.

Impacto

Descargas

Último año



Montesinos Amilibia, José María (2010) The knot engulfing property of 3-manifolds. Atti del Seminario Matematico e Fisico dell' Università di Modena e Reggio Emilia , 57 . pp. 135-140. ISSN 1825-1269



Resumen

The Freudenthal compactification of a 3-manifold M is a compactification M′ such that the end space e(M)=M′∖M is a totally disconnected compact set. The topological uniformization conjecture states that the Freudenthal compactification of the universal covering of a connected, closed 3-manifold is S3 with its end space tamely embedded. A 3-manifold M has the knot engulfing property if every contractible polyhedral simple closed curve in M lies in some polyhedral 3-cell in M. A classical result by Bing (1958) is that the only simply connected closed 3-manifold with the knot engulfing property is S3. The author proves a generalization of Bing's result: A simply connected 3-manifold M has the knot engulfing property if and only if the Freudenthal compactification M′ of M is homeomorphic to S3 with the end space e(M) tamely embedded.
Thus the topological uniformization conjecture can be rephrased as stating that the universal covering of a connected, closed 3-manifold has the knot engulfing property.


Tipo de documento:Artículo
Palabras clave:knot engulfing property; Cantor set; compactification; end
Materias:Ciencias > Matemáticas > Topología
Código ID:21744
Depositado:07 Jun 2013 16:50
Última Modificación:07 Jun 2013 16:50

Descargas en el último año

Sólo personal del repositorio: página de control del artículo