Universidad Complutense de Madrid
E-Prints Complutense

The arithmeticity of certain torus bundle cone 3-manifolds and hyperbolic surface bundle 3-manifolds; and an enhanced arithmeticity test

Impacto

Descargas

Último año



Hilden, Hugh Michael y Lozano Imízcoz, María Teresa y Montesinos Amilibia, José María (1997) The arithmeticity of certain torus bundle cone 3-manifolds and hyperbolic surface bundle 3-manifolds; and an enhanced arithmeticity test. In KNOTS '96. World Scientific Publishing Co, River Edge, pp. 73-80. ISBN 981-02-3093-1



Resumen

The manifold M obtained by 0-surgery on the figure eight knot is a torus bundle over S1, and the core Σ of the surgery is a section of the bundle. The pair (M,Σ) admits a structure as a hyperbolic cone-manifold with cone angle α∈(0,2π). For α of the form 2π/n with n>1, it is a hyperbolic orbifold (M,n). Using an arithmeticity test from one of their previous papers, the authors prove that (M,n) is arithmetic if and only if n=2,3. The test has been enhanced by eliminating an unnecessary condition. Taking branched coverings of the (M,n) yields an explicit construction of many hyperbolic surface bundles over S1, both arithmetic and non-arithmetic.


Tipo de documento:Sección de libro
Información Adicional:

Proceedings of the International Conference and Workshop on Knot Theory held at Waseda University, Tokyo, July 22–26, 1996

Palabras clave:hyperbolic 3-manifold
Materias:Ciencias > Matemáticas > Topología
Código ID:22216
Depositado:05 Jul 2013 15:27
Última Modificación:15 Jul 2013 08:46

Descargas en el último año

Sólo personal del repositorio: página de control del artículo