Universidad Complutense de Madrid
E-Prints Complutense

Asymptotics near an extinction point for some semilinear heat equations

Impacto

Descargas

Último año



Herrero, Miguel A. y Velázquez, J.J. L. (1993) Asymptotics near an extinction point for some semilinear heat equations. In Emerging applications in free boundary problems. Pitman Research Notes in Mathematics Series (280). Longman Scientific and Technical, Harlow, pp. 188-194. ISBN 0-582-08768-6




Resumen

We consider the Cauchy problem u t -u xx +u p =0,x∈ℝ,t>0,u(x,0)=u 0 (x),x∈ℝ, where 0<p<1, u 0 (x) is continuous, nonnegative, and bounded, with a single maximum at x=0 and such that u 0 (-x)=u 0 (x) for any x, lim x→∞ u 0 (x)=0. It is well known that the solution has some features which are absent in the superlinear case p≥1. For instance, there exists T>0 such that u(x,t)¬≡0 if t<T and u(x,t)≡0 for t≥T. Moreover, there exists a continuous curve ζ(t) such that lim t→T ζ(t)=0 and Ω + (t)={x: u(x,t)>0}={x: -ζ(t)<x<ζ(t)}. In this communication we describe some asymptotic results. Namely, lim t→T (T-t) 1 1-p u(ξ(T-t) 1/2 |ln(T-t)| 1/2 ,t)=(1-p) 1 1-p 1 - (1-p) 4p ξ 2 + 1 1-p uniformly on sets |ξ|≤C(T-t) 1/2 |ln(T-t)| 1/2 , and lim t→T ζ(t) (T-t) 1/2 |ln(T-t)|=4p 1-p 1/2 ·


Tipo de documento:Sección de libro
Información Adicional:

Proceedings of the Fifth International Colloquium on Free Boundary Problems: Theory and Applications held in Montreal, Quebec, June 13–22, 1990

Palabras clave:Extinction point; sublinear equation
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:22697
Depositado:03 Sep 2013 14:23
Última Modificación:22 Nov 2013 19:23

Descargas en el último año

Sólo personal del repositorio: página de control del artículo