CHARACTERIZATION OF A BANACH-FINSLER MANIFOLD IN TERMS OF THE ALGEBRAS OF SMOOTH FUNCTIONS

J.A. JARAMILLO, M. JIMÉNEZ-SEVILLA AND L. SÁNCHEZ-GONZÁLEZ

ABSTRACT. In this note we give sufficient conditions to ensure that the weak Finsler structure of a complete \(C^k \) Finsler manifold \(M \) is determined by the normed algebra \(C^b_k(M) \) of all real-valued, bounded and \(C^k \) smooth functions with bounded derivative defined on \(M \). As a consequence, we obtain: (i) the Finsler structure of a finite-dimensional and complete \(C^k \) Finsler manifold \(M \) is determined by the algebra \(C^b_k(M) \); (ii) the weak Finsler structure of a separable and complete \(C^k \) Finsler manifold \(M \) modeled on a Banach space with a Lipschitz and \(C^k \) smooth bump function is determined by the algebra \(C^b_k(M) \); (iii) the weak Finsler structure of a \(C^k \) uniformly bumpable and complete \(C^k \) Finsler manifold \(M \) modeled on a Weakly Compactly Generated (WCG) Banach space with an (equivalent) \(C^k \) smooth norm is determined by the algebra \(C^b_k(M) \); and (iv) the isometric structure of a WCG Banach space \(X \) with a \(C^1 \) smooth bump function is determined by the algebra \(C^b_1(X) \).

1. Introduction and Preliminaries

In this note, we are interested in characterizing the Finsler structure of a Finsler manifold \(M \) in terms of the space of real-valued, bounded and \(C^k \) smooth functions with bounded derivative defined on \(M \). The problem of the interrelation of the topological, metric and smooth structure of a space \(X \) and the algebraic and topological structure of the space \(C(X) \) (the set of real-valued continuous functions defined on \(X \)) has been largely studied. These results are usually referred as Banach-Stone type theorems. Recall the celebrated Banach-Stone theorem, asserting that the compact spaces \(K \) and \(L \) are homeomorphic if and only if the Banach spaces \(C(K) \) and \(C(L) \) endowed with the sup-norm are isometric. For more information on Banach-Stone type theorems see the survey [10] and references therein.

The Myers-Nakai theorem states that the structure of a complete Riemannian manifold \(M \) is characterized in terms of the Banach algebra \(C^1_b(M) \) of all real-valued, bounded and \(C^1 \) smooth functions with bounded derivative defined on \(M \) endowed with the sup-norm of the function and its derivative. More specifically, two complete Riemannian manifolds \(M \) and \(N \) are equivalent as Riemannian manifolds, i.e. there is a \(C^1 \) diffeomorphism \(h : M \to N \) such that

\[
\langle dh(x)(v), dh(x)(w) \rangle_{h(x)} = \langle v, w \rangle_x
\]
for every $x \in M$ and $v, w \in T_xM$ if and only if the Banach algebras $C^1_b(M)$ and $C^1_b(N)$ are isometric. This result was first proved by S. B. Myers [22] for a compact and Riemannian manifold and by M. Nakai [23] for a finite-dimensional Riemannian manifold. Very recently, I. Garrido, J.A. Jaramillo and Y.C. Rangel [12] gave an extension of the Myers-Nakai theorem for every infinite-dimensional, complete Riemannian manifold. A similar result for the so-called finite-dimensional Riemannian-Finsler manifolds is given in [14] (see also [26]).

Our aim in this work is to extend the Myers-Nakai theorem to the context of Finsler manifolds. On the one hand, we obtain the Myers-Nakai theorem for (i) finite-dimensional and complete Finsler manifolds, and (ii) WCG Banach spaces modeled on a Banach space with a Lipschitz and C^k smooth bump function, and (ii) C^k uniformly bumpy and complete Finsler manifolds modeled on WCG Banach spaces with an equivalent C^k smooth norm. In the proof of these results we will use the ideas of the Riemannian case [12].

The notation we use is standard. The norm in a Banach space X is denoted by $\| \cdot \|$. The dual space of X is denoted by X^* and its dual norm by $\| \cdot \|^*$. The open ball with center $x \in X$ and radius $r > 0$ is denoted by $B(x, r)$. A C^k smooth bump function $b : X \to \mathbb{R}$ is a C^k smooth function on X with bounded, non-empty support, where $\text{supp}(b) = \{ x \in X : b(x) \neq 0 \}$. If M is a Banach manifold, we denote by T_xM the tangent space of M at x. Recall that the tangent bundle of M is given by $TM = \{ (x, v) : x \in M \text{ and } v \in T_xM \}$. We refer to [6], [8], [19] and [7] for additional definitions. We will say that the norms $\| \cdot \|_1$ and $\| \cdot \|_2$ defined on a Banach space X are K-equivalent ($K \geq 1$) whether $\frac{1}{K} \| v \|_1 \leq \| v \|_2 \leq K \| v \|_1$, for every $v \in X$.

Let us begin by recalling the definition of a C^k Finsler manifold in the sense of Palais as well as some basic properties (for more information about these manifolds see [25], [7], [27], [24], [13] and [18]).

Definition 1.1. Let M be a (paracompact) C^k Banach manifold modeled on a Banach space $(X, \| \cdot \|)$, where $k \in \mathbb{N} \cup \{ \infty \}$. Let us consider the tangent bundle TM of M and a continuous map $\| \cdot \|_M : TM \to [0, \infty)$. We say that $(M, \| \cdot \|_M)$ is a C^k Finsler manifold in the sense of Palais if $\| \cdot \|_M$ satisfies the following conditions:

1. **(P1)** For every $x \in M$, the map $\| \cdot \|_x := \| \cdot \|_M|_{T_xM} : T_xM \to [0, \infty)$ is a norm on the tangent space T_xM such that for every chart $\varphi : U \to X$ with $x \in U$, the norm $v \in X \mapsto \| d\varphi^{-1}(\varphi(x))(v) \|_x$ is equivalent to $\| \cdot \|$ on X.

2. **(P2)** For every $x_0 \in M$, every $\varepsilon > 0$ and every chart $\varphi : U \to X$ with $x_0 \in U$, there is an open neighborhood W of x_0 such that if $x \in W$ and $v \in X$, then

\[
(1.1) \quad \frac{1}{1 + \varepsilon} \| d\varphi^{-1}(\varphi(x_0))(v) \|_{x_0} \leq \| d\varphi^{-1}(\varphi(x))(v) \|_x \leq (1 + \varepsilon) \| d\varphi^{-1}(\varphi(x_0))(v) \|_{x_0}.
\]
In terms of equivalence of norms, the above inequalities yield the fact that the norms \(|d\varphi^{-1}(\varphi(x))(\cdot)|_x \) and \(|d\varphi^{-1}(\varphi(x_0))(\cdot)|_{x_0} \) are \((1 + \varepsilon)\)-equivalent.

Let us recall that Banach spaces and Riemannian manifolds are \(C^\infty \) Finsler manifolds in the sense of Palais [25].

Let \(M \) be a Finsler manifold, we denote by \(T_x M^* \) the dual space of the tangent space \(T_x M \). Let \(f : M \to \mathbb{R} \) be a differentiable function at \(p \in M \). The norm of \(df(p) \in T_p M^* \) is given by

\[
|df(p)|_p = \sup \{|df(p)(v)| : v \in T_p M, |v|_p \leq 1\}.
\]

Let us consider a differentiable function \(f : M \to N \) between Finsler manifolds \(M \) and \(N \). The norm of the derivative at the point \(p \in M \) is defined as

\[
|df(p)|_p = \sup \{|df(p)(v)| : v \in T_p M, |v|_p \leq 1\} = \sup \{ |\xi(df(p)(v))| : \xi \in T_{f(p)} N^*, v \in T_p M \text{ and } |v|_p = 1 = |\xi|_{T_{f(p)}}^* \},
\]

where \(|\cdot|_{T_{f(p)}}^* \) is the dual norm of \(|\cdot|_{T_{f(p)}} \). Recall that if \((M,|\cdot|,|\cdot|_M)\) is a Finsler manifold, the length of a piecewise \(C^1 \) smooth path \(c : [a, b] \to M \) is defined as \(\ell(c) = \int_a^b |c'(t)|_{c(t)} dt \). Besides, if \(M \) is connected, then it is connected by piecewise \(C^1 \) smooth paths, and the associated Finsler metric \(d_M \) on \(M \) is defined as

\[
d_M(p, q) = \inf \{ \ell(c) : c \text{ is a piecewise } C^1 \text{ smooth path connecting } p \text{ and } q \}.
\]

It was shown in [25] that the Finsler metric is consistent with the topology given in \(M \). The open ball of center \(p \in M \) and radius \(r > 0 \) is denoted by \(B_M(p, r) := \{ q \in M : d_M(p, q) < r \} \). The Lipschitz constant \(\text{Lip}(f) \) of a Lipschitz function \(f : M \to N \), where \(M \) and \(N \) are Finsler manifolds, is defined as \(\text{Lip}(f) = \sup \{ \frac{d_N(f(x), f(y))}{d_M(x, y)} : x, y \in M, x \neq y \} \). We shall only consider connected manifolds. Let us recall the following “mean value inequality” for Finsler manifolds [1, 18].

Lemma 1.2. Let \(M \) and \(N \) be \(C^1 \) Finsler manifolds (in the sense of Palais) and \(f : M \to N \) a \(C^1 \) smooth function. Then, \(f \) is Lipschitz if and only if \(|df|_\infty := \sup \{||df(x)||_x : x \in M\} < \infty \). Furthermore, \(\text{Lip}(f) = |df|_\infty \).

We will also need the following result related to the \((1 + \varepsilon)\)-bi-Lipschitz local behavior of the charts of a \(C^1 \) Finsler manifold in the sense of Palais [18, Lemma 2.4].

Lemma 1.3. Let us consider a \(C^1 \) Finsler manifold \(M \) (in the sense of Palais). Then, for every \(x_0 \in M \) and every chart \((U, \varphi)\) with \(x_0 \in U \) satisfying inequality (1.1), there exists an open neighborhood \(V \subset U \) of \(x_0 \) satisfying

\[
\frac{1}{1 + \varepsilon} d_M(p, q) \leq ||| \varphi(p) - \varphi(q) ||| \leq (1 + \varepsilon) d_M(p, q), \text{ for every } p, q \in V,
\]

where \(||| \cdot ||| \) is the (equivalent) norm \(|d\varphi^{-1}(\varphi(x_0))(\cdot)|_{x_0} \) defined on \(X \).

Now, let us recall the concept of uniformly bumpable manifold, introduced by D. Azagra, J. Ferrera and F. López-Mesas [1] for Riemannian manifolds. A natural extension to Finsler manifolds is defined in the same way [18].

Definition 1.4. A \(C^k \) Finsler manifold in the sense of Palais \(M \) is \(C^k \) uniformly bumpable whenever there are \(R > 1 \) and \(r > 0 \) such that for every \(p \in M \) and \(\delta \in (0, r) \) there exists a \(C^k \) smooth function \(b : M \to [0, 1] \) such that:
(1) \(b(p) = 1 \),
(2) \(b(q) = 0 \) whenever \(d_M(p, q) \geq \delta \),
(3) \(\sup_{q \in M} ||db(q)|| \leq R/\delta \).

Note that this is not a restrictive definition: D. Azagra, J. Ferrera, F. Lopéz-Mesas and Y. Rangel [3] proved that every separable Riemannian manifold is \(C^\infty \) uniformly bumpable. This result was generalized in [18], where it was proved that every \(C^1 \) Finsler manifold (in the sense of Palais) modeled on a certain class of Banach spaces (such as Hilbert spaces, Banach spaces with separable dual, closed subspaces of \(c_0(\Gamma) \) for every set \(\Gamma \neq \emptyset \)) is \(C^1 \) uniformly bumpable. In particular, every Riemannian manifold (either separable or non-separable) is \(C^1 \) uniformly bumpable.

It is straightforward to verify that if a \(C^k \) Finsler manifold \(M \) is modeled on a Banach space \(X \) and \(M \) is \(C^k \) uniformly bumpable, then \(X \) admits a Lipschitz \(C^k \) smooth bump function. Besides, a separable \(C^k \) Finsler manifold \(M \) is modeled on a Banach space with a Lipschitz, \(C^k \) smooth bump function if and only if \(M \) is \(C^k \) uniformly bumpable [18]. Nevertheless, we do not know whether this equivalence holds in the non-separable case.

From now on, we shall refer to \(C^k \) Finsler manifolds in the sense of Palais as \(C^k \) Finsler manifolds, and \(k \in \mathbb{N} \cup \{\infty\} \). We shall use the standard notation of \(C^k(U, Y) \) for the set of all \(k \)-times continuously differentiable functions defined on an open subset \(U \) of a Banach space (Finsler manifold) taking values into a Banach space (Finsler manifold) \(Y \). We shall write \(C^k(U) \) whenever \(Y = \mathbb{R} \).

Now, let us recall the concept of weakly \(C^k \) smooth function.

Definition 1.5. Let \(X \) and \(Y \) be Banach spaces and consider a function \(f : U \to Y \), where \(U \) is an open subset of \(X \). The function \(f \) is said to be a **weakly \(C^k \) smooth** at the point \(x_0 \) whenever there is an open neighborhood \(U_{x_0} \) of \(x_0 \) such that \(y^* \circ f \) is \(C^k \) smooth at \(U_{x_0} \), for every \(y^* \in Y^* \). The function \(f \) is said to be a **weakly \(C^k \) smooth** on \(U \) whenever \(f \) is weakly \(C^k \) smooth at every point \(x \in U \).

On the one hand, J. M. Gutiérrez and J. L. G. Llavona [15] proved that if \(f : U \to Y \) is weakly \(C^k \) smooth on \(U \), then \(g \circ f \in C^k(U) \) for all \(g \in C^k(Y) \). They also proved that if \(f : U \to Y \) is weakly \(C^k \) smooth on \(U \), then \(f \in C^{k-1}(U) \). For \(k = 1 \), the above yields that every weakly \(C^1 \) smooth function on \(U \) is continuous on \(U \). Also, for \(k = \infty \), every weakly \(C^\infty \) smooth function on \(U \) is \(C^\infty \) smooth on \(U \). M. Bachir and G. Lancien [4] proved that, if the Banach space \(Y \) has the Schur property, then the concept of weakly \(C^k \) smoothness coincides with the concept of \(C^k \) smoothness.

On the other hand, there are examples of weakly \(C^1 \) smooth functions that are not \(C^1 \) smooth (see [15] and [4]).

Definition 1.6. Let \(M \) and \(N \) be \(C^k \) Finsler manifolds and \(U \subset M \), \(O \subset N \) open subsets of \(M \) and \(N \), respectively. A function \(f : U \to N \) is said to be **weakly \(C^k \) smooth** at the point \(x_0 \) if there exist charts \((W, \varphi)\) of \(M \) at \(x_0 \) and \((V, \psi)\) of \(N \) at \(f(x_0) \) such that \(\psi \circ f \circ \varphi^{-1} \) is weakly \(C^k \) smooth at \(\varphi(W) \). We say that \(f : U \to N \) is **weakly \(C^k \) smooth** in \(U \) if \(f \) is weakly \(C^k \) smooth at every point \(x \in U \). We say that a bijection \(f : U \to O \) is a **weakly \(C^k \) diffeomorphism** if \(f \) and \(f^{-1} \) are weakly \(C^k \) smooth on \(U \) and \(O \), respectively. Notice that these definitions do not depend on the chosen charts.
Let us note that there are homeomorphisms which are weakly C^1 smooth but not differentiable. Indeed, we follow [15, Example 3.9] and define $g : \mathbb{R} \to c_0(\mathbb{N})$ and $h : c_0(\mathbb{N}) \to c_0(\mathbb{N})$ by $g(t) = (0, \frac{1}{t} \sin(2t), \ldots, \frac{1}{n} \sin(nt), \ldots)$ and $h(x) = x + g(x_1)$ for every $t \in \mathbb{R}$ and $x = (x_1, \ldots, x_n, \ldots) \in c_0$. The function h is an homeomorphism, $h^{-1}(y) = y - g(y_1)$ for every $y \in c_0$, and h is weakly C^1 smooth on $c_0(\mathbb{N})$. Notice that if h were differentiable at a point $x \in c_0$ with $x_1 = 0$, then

$$h'(x)(1,0,0,\ldots) = (1,1,1,\ldots) \in \ell_\infty \setminus c_0,$$

which is a contradiction.

Now, let us consider different definitions of isometries between C^k Finsler manifolds.

Definition 1.7. Let $(M, || \cdot ||_M)$ and $(N, || \cdot ||_N)$ be C^k Finsler manifolds and a bijection $h : M \to N$.

1. **(MI)** We say that h is a **metric isometry** for the Finsler metrics, if

 $$d_N(h(x), h(y)) = d_M(x, y), \quad \text{for every } x, y \in M.$$

2. **(FI)** We say that h is a C^k **Finsler isometry** if it is a C^k diffeomorphism satisfying

 $$||dh(x)(v)||_{h(x)} = ||(h(x), dh(x)(v))||_N = ||(x, v)||_M = ||v||_x,$$

 for every $x \in M$ and $v \in T_xM$. We say that the Finsler manifolds M and N are C^k **equivalent as Finsler manifolds** if there is a C^k Finsler isometry between M and N.

3. **(w-FI)** We say that h is a weak C^k **Finsler isometry** if it is a weakly C^k diffeomorphism and a metric isometry for the Finsler metrics. We say that the Finsler manifolds M and N are **weakly C^k equivalent as Finsler manifolds** if there is a weak C^k Finsler isometry between M and N.

Proposition 1.8. Let M and N be C^k Finsler manifolds. Let us assume that there is a C^k diffeomorphism and metric isometry (for the Finsler metrics) $h : M \to N$. Then h is a C^k Finsler isometry.

Proof. Let us fix $x \in M$ and $y = h(x) \in N$. For every $\varepsilon > 0$, there are $r > 0$ and charts $\varphi : B_M(x, r) \subset M \to X$ and $\psi : B_N(y, r) \subset N \to Y$ satisfying inequalities (1.1) and (1.2). Since $h : M \to N$ is a metric isometry, h is a bijection from $B_M(x, r)$ onto $B_N(y, r)$.

Let us consider the equivalent norms on X and Y defined as $||\cdot||_{x} := ||d\varphi^{-1}(\varphi(x))(\cdot)||_{x}$ and $||\cdot||_{y} := ||d\psi^{-1}(\psi(y))(\cdot)||_{y}$, respectively.

Since h is a metric isometry, we obtain from Lemma 1.3, for p, q in an open neighborhood of $\varphi(x)$,

$$||\psi \circ h \circ \varphi^{-1}(p) - \psi \circ h \circ \varphi^{-1}(q)||_y \leq (1 + \varepsilon)d_N(h \circ \varphi^{-1}(p), h \circ \varphi^{-1}(q)) = (1 + \varepsilon)d_M(\varphi^{-1}(p), \varphi^{-1}(q)) \leq (1 + \varepsilon)^2||p - q||_x.$$
Thus, \(\sup\{||d(\psi \circ h \circ \varphi^{-1})(\varphi(x))(w)||_y : ||w||_x \leq 1\} \leq (1 + \varepsilon)^2 \). Now, for every \(v \in T_x M \) with \(v \neq 0 \), let us write \(w = d\varphi(x)(v) \in X \). We have
\[
||dh(x)(v)||_y = ||d\psi^{-1}(\psi(y))d\psi(y)dh(x)(v)||_y = ||d(\psi \circ h)(x)||_y = \\
= ||d(\psi \circ h)(x)df^{-1}(\varphi(x))(w)||_y = ||d(\psi \circ h \circ \varphi^{-1})(\varphi(x))(w)||_y \leq \\
\leq (1 + \varepsilon)^2||w||_x = (1 + \varepsilon)^2||v||_x.
\]

Since this inequality holds for every \(\varepsilon > 0 \) and the same argument works for \(h^{-1} \), we conclude that \(||dh(x)(v)||_y = ||v||_x \) for all \(v \in T_x M \). Thus, \(h \) is a \(C^k \) Finsler isometry.

Let us now turn our attention to the Banach algebra \(C^1_b(M) \), the algebra of all real-valued, \(C^1 \) smooth and bounded functions with bounded derivative defined on a \(C^1 \) Finsler manifold \(M \), i.e.
\[
C^1_b(M) = \{ f : M \to \mathbb{R} : f \in C^1(M), ||f||_\infty < \infty \text{ and } ||df||_\infty < \infty \},
\]
where \(||f||_\infty := \sup\{|f(x)| : x \in M\} \) and \(||df||_\infty := \sup\{|df(x)|_x : x \in M\} \).
The usual norm considered on \(C^1_b(M) \) is \(||f||_{C^1} = \max\{||f||_\infty, ||df||_\infty\} \) for every \(f \in C^1_b(M) \) and \((C^1_b(M), ||\cdot||_{C^1}) \) is a Banach space. Let us notice that, by Lemma 1.2, we have \(||df||_{\infty} = \text{Lip}(f) \). Recall that \((C^1_b(M), 2||\cdot||_{C^1}) \) is a Banach algebra.

For \(2 \leq k \leq \infty \) and a \(C^k \) Finsler manifold \(M \), let us consider the algebra \(C^k_b(M) \) of all real-valued, \(C^k \) smooth and bounded functions that have bounded first derivative, i.e.
\[
C^k_b(M) = \{ f : M \to \mathbb{R} : f \in C^k(M), ||f||_\infty < \infty \text{ and } ||df||_\infty < \infty \} = C^k(M) \cap C^1_b(M).
\]
with the norm \(||\cdot||_{C^1} \). Thus, \(C^k_b(M) \) is a subalgebra of \(C^1_b(M) \). Nevertheless, it is not a Banach algebra.

A function \(\varphi : C^k_b(M) \to \mathbb{R} \) is said to be an algebra homomorphism whether for all \(f, g \in C^k_b(M) \) and \(\lambda, \eta \in \mathbb{R} \),
(i) \(\varphi(\lambda f + \eta g) = \lambda \varphi(f) + \eta \varphi(g) \), and
(ii) \(\varphi(f \cdot g) = \varphi(f) \varphi(g) \).

Let us denote by \(H(C^k_b(M)) \) the set of all nonzero algebra homomorphisms, i.e.
\[
H(C^k_b(M)) = \{ \varphi : C^k_b(M) \to \mathbb{R} : \varphi \text{ is an algebra homomorphism and } \varphi(1) = 1 \}.
\]
Let us list some of the basic properties of the algebra \(C^k_b(M) \) and the algebra homomorphisms \(H(C^k_b(M)) \). They can be checked as in the Riemannian case (see [11], [12] and [17]).

(a) If \(\varphi \in H(C^k_b(M)) \), then \(\varphi \neq 0 \) if and only if \(\varphi(1) = 1 \).
(b) If \(\varphi \in H(C^k_b(M)) \), then \(\varphi \) is positive, i.e. \(\varphi(f) \geq 0 \) for every \(f \geq 0 \).
(c) If the \(C^k \) Finsler manifold \(M \) is modeled on a Banach space that admits a Lipschitz and \(C^k \) smooth bump function, then \(C^k_b(M) \) is a unital algebra that separates points and closed sets of \(M \). Let us briefly give the proof for completeness. Let us take \(x \in M \), and \(C \subset M \) a closed subset of \(M \) with \(x \notin C \). Let us take \(r > 0 \) small enough so that \(C \cap B_M(x, r) = \emptyset \) and a chart \(\varphi : B_M(x, r) \to X \) satisfying inequality (1.1). Let us take \(s > 0 \) small enough so that \(\varphi(x) \in B(\varphi(x), s) \subset \varphi(B(x, r/2)) \subset X \) and a Lipschitz and
Let M be a complete C^k Finsler manifold that is C^k uniformly bumpable. Then, $\varphi \in H(C^k_b(M))$ has a countable neighborhood basis in $H(C^k_b(M))$ if and only if $\varphi \in M$.

2. A Myers-Nakai Theorem

Our main result is the following Banach-Stone type theorem for a certain class of Finsler manifolds. It states that the algebra structure of $C^k_b(M)$ determines the C^k Finsler manifold. Recall that two normed algebras $(A,|| \cdot ||_A)$ and $(B,|| \cdot ||_B)$ are equivalent as normed algebras whenever there exists an algebra isomorphism $T : A \to B$ satisfying $||T(a)||_B = ||a||_A$ for every $a \in A$. Let us begin by defining the class of Banach spaces where the Finsler manifolds shall be modeled.

Definition 2.1. A Banach space $(X,|| \cdot ||)$ is said to be k-admissible if for every equivalent norm $| \cdot |$ and $\varepsilon > 0$, there are an open subset $B \supset \{x \in X : |x| \leq 1\}$ of X and a C^k smooth function $g : B \to \mathbb{R}$ such that

(i) $|g(x) - |x|| < \varepsilon$ for $x \in B$, and

(ii) $\text{Lip}(g) \leq (1 + \varepsilon)$ for the norm $| \cdot |$.

It is easy to prove the following lemma.

Lemma 2.2. Let X be a Banach space with one of the following properties:

(A.1) Density of the set of equivalent C^k smooth norms: every equivalent norm on X can be approximated in the Hausdorff metric by equivalent C^k smooth norms [6].

(A.2) C^k-fine approximation property ($k \geq 2$) and density of the set of equivalent C^1 smooth norms: For every C^1 smooth function $f : X \to \mathbb{R}$ and every

C^k smooth bump function $b : X \to \mathbb{R}$ with $b(\varphi(x)) = 1$ and $b(z) = 0$ for every $z \notin B(\varphi(x), s)$. Let us define $h : M \to \mathbb{R}$ as $h(p) = b(\varphi(p))$ for every $p \in B_M(x, r)$ and $h(p) = 0$ otherwise. Then $h \in C^k_b(M)$, $h(x) = 1$ and $h(c) = 0$ for every $c \in C$.

(d) The space $H(C^k_b(M))$ is closed as a topological subspace of $\mathbb{R}^{C^k_b(M)}$ with the product topology. Moreover, since every function in $C^k_b(M)$ is bounded, it can be checked that $H(C^k_b(M))$ is compact in $\mathbb{R}^{C^k_b(M)}$.

(e) If $C^k_b(M)$ separates points and closed subsets, then M can be embedded as a topological subspace of $H(C^k_b(M))$ by identifying every $x \in M$ with the point evaluation homomorphism δ_x given by $\delta_x(f) = f(x)$ for every $f \in C^k_b(M)$. Also, it can be checked that the subset $\delta(M) = \{\delta_x : x \in M\}$ is dense in $H(C^k_b(M))$. Therefore, it follows that $H(C^k_b(M))$ is a compactification of M.

(f) Every $f \in C^k_b(M)$ admits a continuous extension \hat{f} to $H(C^k_b(M))$, where $\hat{f}(\varphi) = \varphi(f)$ for every $\varphi \in H(C^k_b(M))$. Notice that this extension \hat{f} coincides in $H(C^k_b(M))$ with the projection $\pi_f : \mathbb{R}^{C^k_b(M)} \to \mathbb{R}$, given by $\pi_f(\varphi) = \varphi(f)$, i.e. $\pi_f|_{H(C^k_b(M))} = \hat{f}$. In the following, we shall identify M with $\delta(M)$ in $H(C^k_b(M))$.

The next proposition can be proved in a similar way to the Riemannian case [12].

Proposition 1.9. Let M be a complete C^k Finsler manifold that is C^k uniformly bumpable. Then, $\varphi \in H(C^k_b(M))$ has a countable neighborhood basis in $H(C^k_b(M))$ if and only if $\varphi \in M$.
\[\varepsilon > 0, \text{there is a } C^k \text{ smooth function } g : X \to \mathbb{R} \text{ satisfying } |f(x) - g(x)| < \varepsilon \]
\[\text{and } ||f'(x) - g'(x)|| < \varepsilon \text{ for all } x \in X \text{ (see [16], [2] and [20]); also, every equivalent norm defined on } X \text{ can be approximated in the Hausdorff metric by equivalent } C^1 \text{ smooth norms (see [6, Theorem II 4.1]).} \]

Then \(X \) is \(k \)-admissible.

Banach spaces satisfying condition (A.2) are, for instance, separable Banach spaces with a Lipschitz \(C^k \) smooth bump function. Banach spaces satisfying condition (A.1) for \(k = 1 \) are, for instance, Weakly Compactly Generated (WCG) Banach spaces with a \(C^1 \) smooth bump function.

Theorem 2.3. Let \(M \) and \(N \) be complete \(C^k \) Finsler manifolds that are \(C^k \) uniformly bumpy and are modeled on \(k \)-admissible Banach spaces. Then \(M \) and \(N \) are weakly \(C^k \) equivalent as Finsler manifolds if and only if \(C^k_b(M) \) and \(C^k_b(N) \) are equivalent as normed algebras. Moreover, every normed algebra isomorphism \(T : C^k_b(N) \to C^k_b(M) \) is of the form \(T(f) = f \circ h \) where \(h : M \to N \) is a weak \(C^k \) Finsler isometry. In particular, \(h \) is a \(C^{k-1} \) Finsler isometry whenever \(k \geq 2 \).

In order to prove Theorem 2.3, we shall follow the ideas of the Riemannian case [12]. Let us divide the proof into several propositions.

Proposition 2.4. Let \(M \) and \(N \) be \(C^k \) Finsler manifolds such that \(N \) is modeled on a \(k \)-admissible Banach space \(Y \). Let \(h : M \to N \) be a map such that \(T : C^k_b(N) \to C^k_b(M) \) given by \(T(f) = f \circ h \) is continuous. Then \(h \) is \(||T|| \)-Lipschitz for the Finsler metrics.

Proof. For every \(y \in N \), let us take a chart \(\psi_y : V_y \to Y \) with \(\psi_y(y) = 0 \). Let us consider the equivalent norm on \(Y \), \(||| \cdot |||_y := ||d\psi_y^{-1}(0)(\cdot)||_y \) and fix \(\varepsilon > 0 \). Let us define the ball \(B_{||| \cdot |||_y}(z,t) := \{w \in Y : |||w - z|||_y < t\} \).

Fact. For every \(r > 0 \) such that \(B_{||| \cdot |||_y}(0,r) \subset \psi_y(V_y) \) and every \(\bar{\varepsilon} > 0 \), there exists a \(C^k \) smooth and Lipschitz function \(f_y : Y \to \mathbb{R} \) such that

(1) \(f_y(0) = r \),
(2) \(||f_y||_\infty := \sup\{||f_y(z)|| : z \in Y\} = r \),
(3) \(\text{Lip}(f_y) \leq (1 + \varepsilon)^2 \) for the norm \(||| \cdot |||_y \),
(4) \(f_y(z) = 0 \) for every \(z \in Y \) with \(|||z|||_y \geq r \), and
(5) \(||z||_y \leq r - f_y(z) + \bar{\varepsilon} \) for every \(||z||_y \leq r \).

Let us prove the Fact. First of all, let us take \(r > 0, \bar{\varepsilon} > 0 \) and \(0 < \alpha < \min\{1, \frac{\bar{\varepsilon}}{4}, \frac{\bar{\varepsilon}}{2r}\} \).

Since \(N \) is a \(C^k \) Finsler manifold modeled on a \(k \)-admissible Banach space \(Y \), there are an open subset \(B \supset \{x \in Y : |||x|||_y \leq 1\} \) of \(Y \) and a \(C^k \) smooth function \(g : B \to \mathbb{R} \) such that

(i) \(g(x) - |||x|||_y < \alpha/2 \) on \(B \), and
(ii) \(\text{Lip}(g) \leq (1 + \alpha/2) \) for the norm \(||| \cdot |||_y \).

Now, let us take a \(C^\infty \) smooth and Lipschitz function \(\theta : \mathbb{R} \to [0,1] \) such that

(i) \(\theta(t) = 0 \) whenever \(t \leq \alpha \),
(ii) \(\theta(t) = 1 \) whenever \(t \geq 1 - \alpha \),
(iii) \(\text{Lip}(\theta) \leq (1 + \varepsilon) \), and
(iv) \(|\theta(t) - t| \leq 2\alpha \) for every \(t \in [0,1 + \alpha] \).
Let us define
\[f(x) = \begin{cases} \theta(g(x)) & \text{if } x \in B, \\ 1 & \text{if } x \in Y \setminus B. \end{cases} \]
It is straightforward to verify that \(f \) is well-defined, \(C^k \) smooth, \(f(x) = 1 \) whenever \(|||x|||_y \geq 1 \) and \(f(x) = 0 \) whenever \(|||x|||_y \leq \alpha/2 \). Let us now consider \(f_y : Y \to [0, r] \) as \(f_y(z) = r(1 - \frac{f(z)}{r}) \), which is \(C^k \) smooth, Lipschitz and satisfies:

(i) \(f_y(0) = r \),
(ii) \(\|f_y\|_\infty = r \),
(iii) \(|f_y(z) - f_y(x)| \leq (1 + \varepsilon)(1 + \alpha/2)||z - x||_y \leq (1 + e)^2||z - x||_y \),
(iv) \(f_y(z) = 0 \) for every \(z \in Y \) with \(|||z|||_y \geq r \),
(v) \(\|\frac{z}{r}|||z|||_y \leq \frac{\alpha}{2} + g(\frac{z}{r}) \leq \frac{\alpha}{2} + 2\alpha + f(\frac{z}{r}) \) for every \(|||z|||_y \leq r \). Thus, \(|||z|||_y \leq r(\frac{\alpha}{2} + 2\alpha) + r - f_y(z) \leq \varepsilon + r - f_y(z) \) for every \(|||z|||_y \leq r \).

Let us now prove Proposition 2.4. Let us fix \(p_1, p_2 \in M \) and \(\varepsilon > 0 \). Let us consider \(\sigma : [0, 1] \to M \) a piecewise \(C^1 \) smooth path in \(M \) joining \(p_1 \) and \(p_2 \), with \(\ell(\sigma) \leq d_M(p_1, p_2) + \varepsilon \). Since \(h : M \to N \) is continuous, the path \(\tilde{\sigma} := h \circ \sigma : [0, 1] \to N \), joining \(h(p_1) \) and \(h(p_2) \), is continuous as well. For every \(q \in \tilde{\sigma}([0, 1]) \), there is \(0 < r_q < 1 \) and a chart \(\psi_q : V_q \to Y \) such that \(\psi_q(q) = 0 \), \(B_N(q, r_q) \subset V_q \) and the bijection \(\psi_q : V_q \to \psi_q(V_q) = (1 + \varepsilon)\)-bi-Lipschitz for the norm \(||d\psi_q^{-1}(0)(\cdot)||_q \) in \(Y \) (see Lemma 1.3). Since \(\tilde{\sigma}([0, 1]) \) is a compact set of \(N \), there is a finite family of points \(0 = t_1 < t_2 < \ldots < t_m = 1 \) and a family of open intervals \(\{I_k\}_{k=1}^m \) covering the interval \([0, 1]\) so that, if we define \(q_k := \tilde{\sigma}(t_k) \) and \(r_k := r_{q_k} \), for every \(k = 1, \ldots, m \), we have

(a) \(\tilde{\sigma}(I_k) \subset B_N(q_k, r_k/(1 + \varepsilon)) \),
(b) \(I_j \cap I_k \neq \emptyset \) if and only if \(|j - k| \leq 1 \).

It is clear that \(\tilde{\sigma}([0, 1]) \subset \bigcup_{k=1}^m B_N(q_k, \frac{r_k}{1 + \varepsilon}) \). Now, let us select a point \(s_k \in I_k \cap I_{k+1} \) such that \(t_k < s_k < t_{k+1} \), for every \(k = 1, \ldots, m - 1 \). Let us write \(a_k := \tilde{\sigma}(s_k) \), for every \(k = 1, \ldots, m - 1 \), \(\psi_k := \psi_{q_k} \), \(V_k := V_{q_k} \) and \(||| \cdot |||_k := ||d\psi_k^{-1}(0)(\cdot)||_q \) for every \(k = 1, \ldots, m \). Notice that \(a_k \in B_N(q_k, \frac{r_k}{1 + \varepsilon}) \cap B_N(q_{k+1}, \frac{r_k}{1 + \varepsilon}) \), for every \(k = 1, \ldots, m - 1 \). Since \(\psi_k : V_k \to \psi_k(V_k) = (1 + \varepsilon)\)-bi-Lipschitz for the norm \(||| \cdot |||_k \) in \(Y \), we deduce that \(\psi_k(a_k) \in B_{||| \cdot |||_k}(0, r_k) \), for every \(k = 1, \ldots, m - 1 \).

Now, let us apply the above Fact to \(r_k, \varepsilon \) and \(\varepsilon = \varepsilon/2m \) to obtain functions \(f_k : Y \to [0, r_k] \) satisfying properties (1)–(5), \(k = 1, \ldots, m \). Let us define the \(C^k \) smooth and Lipschitz functions \(g_k : N \to [0, r_k] \) as \(g_k(z) = f_k(\psi_k(z)) \) for every \(z \in V_k \) and \(g_k(z) = 0 \) for \(z \not\in V_k, k = 1, \ldots, m \). Then,

(i) \(g_k \in C^k_b(N) \),
(ii) \(g_k(q_k) = r_k \),
(iii) \(|g_k(z) - g_k(x)| \leq (1 + \varepsilon)^3 d_N(z, x) \) for all \(z, x \in N \);
(iv) If \(z \in \psi_k^{-1}(B_{||| \cdot |||_k}(0, r_k)) \), then \(|||\psi_k(z)|||_k \leq r_k \) and from condition (5) on the Fact, we obtain
\[d_N(z, q_k) \leq (1 + \varepsilon)|||\psi_k(z) - \psi_k(q_k)|||_k = (1 + \varepsilon)|||\psi_k(z)|||_k \leq (1 + \varepsilon)(r_k - g_k(z) + \varepsilon/2m). \]

The Lipschitz constant of \(g_k \circ h \), for \(k = 1, \ldots, m \), is the following
\[\text{Lip}(g_k \circ h) \leq ||g_k \circ h||_{C^k_b(M)} = ||T(g_k)||_{C^k_b(M)} \leq ||T|| ||g_k||_{C^k_b(N)} = ||T|| \max\{||g_k||_{\infty}, ||dg_k||_{\infty}\} \leq ||T||(1 + \varepsilon)^3. \]
Now, since $r_k = g_k(q_k) = g_k(h(\sigma(t_k)))$ and $\psi_k(h(\sigma(s_k))) \in B_{||\cdot||}_k(0,r_k)$, we have

$$d_N(h(p_1),h(p_2)) \leq \sum_{k=1}^{m-1} [d_N(h(\sigma(t_k)), h(\sigma(s_k))) + d_N(h(\sigma(s_k)), h(\sigma(t_{k+1}))))] \leq$$

$$\leq \sum_{k=1}^{m-1} (1 + \varepsilon)[g_k(q_k) - g_k(h(\sigma(s_k)))+$$

$$+ g_{k+1}(q_{k+1}) - g_{k+1}(h(\sigma(s_k))) + \varepsilon/m] \leq$$

$$\leq \sum_{k=1}^{m-1} (1 + \varepsilon)\text{Lip}(g_k \circ h)d_M(\sigma(t_k), \sigma(s_k))+$$

$$+ \text{Lip}(g_{k+1} \circ h)d_M(\sigma(t_{k+1}), \sigma(s_k)) + \varepsilon/m] \leq$$

$$\leq \sum_{k=1}^{m-1} ||T||(1 + \varepsilon)^4[d_M(\sigma(t_k), \sigma(s_k)) + d_M(\sigma(t_{k+1}), \sigma(s_k))] + \varepsilon(1 + \varepsilon) \leq$$

$$\leq \sum_{k=1}^{m-1} ||T||(1 + \varepsilon)^4d_\sigma(\varepsilon_0,\varepsilon_1) + \varepsilon(1 + \varepsilon) = ||T||(1 + \varepsilon)^4\ell(\sigma) + \varepsilon(1 + \varepsilon) \leq$$

$$\leq ||T||(1 + \varepsilon)^4(d_M(p_1,p_2) + \varepsilon) + \varepsilon(1 + \varepsilon)$$

for every $\varepsilon > 0$. Thus, h is $||T||$-Lipschitz.

\[\square\]

Lemma 2.5. Let M and N be C^k Finsler manifolds such that N is modeled on a Banach space with a Lipschitz C^k smooth bump function. Let $h : M \to N$ be a homeomorphism such that $f \circ h \in C^k_b(N)$ for every $f \in C^k_b(N)$. Then, h is a weakly C^k smooth function on M.

Proof. Let us fix $x \in M$ and $\varepsilon = 1$. There are charts $\varphi : U \to X$ of M at x and $\psi : V \to Y$ of N at $h(x)$ satisfying inequalities (1.1) and (1.2) on U and V, respectively. We can assume that $h(U) \subset V$. Since Y admits a Lipschitz and C^k smooth bump function and $\psi(h(U))$ is an open neighborhood of $\psi(h(x))$ in Y, there are real numbers $0 < s < r$ such that $B(\psi(h(x)), s) \subset B(\psi(h(x)), r) \subset \psi(h(U))$ and a Lipschitz and C^k smooth function $\alpha : Y \to \mathbb{R}$ such that $\alpha(y) = 1$ for $y \in B(\psi(h(x)), s)$ and $\alpha(y) = 0$ for $y \notin B(\psi(h(x)), r)$. Let us define $U_0 := h^{-1}(\psi^{-1}(B(\psi(h(x)), s))) \subset U$, which is an open neighborhood of x in M.

Let us check that $y^* \circ (\psi \circ h \circ \varphi^{-1})$ is C^k smooth on $\varphi(U_0) \subset X$ for all $y^* \in Y^*$. Following the proof of [9, Theorem 4], we define $g : N \to \mathbb{R}$ as $g(y) = 0$ whenever $y \notin V$ and $g(y) = \alpha(\psi(y)) \cdot y^*(\psi(y))$ whenever $y \in V$. It is clear that $g \in C^k_b(N)$ and, by assumption, $g \circ h \in C^k_b(M)$. Now, it follows that $\psi(h(\varphi^{-1}(z))) \in B(\psi(h(x)), s)$ for every $z \in \varphi(U_0)$. Thus

$$y^* \circ (\psi \circ h \circ \varphi^{-1})(z) = y^*(\psi(h(\varphi^{-1}(z)))) = \alpha(\psi(h(\varphi^{-1}(z))))y^*(\psi(h(\varphi^{-1}(z)))) =$$

$$= g(h(\varphi^{-1}(z))) = g \circ h \circ \varphi^{-1}(z),$$

for every $z \in \varphi(U_0)$. Since $(g \circ h) \circ \varphi^{-1}$ is C^k smooth on $\varphi(U_0)$, we have that $y^* \circ (\psi \circ h \circ \varphi^{-1})$ is C^k smooth on $\varphi(U_0)$. Thus $\psi \circ h \circ \varphi^{-1}$ is weakly C^k smooth on $\varphi(U_0)$ and h is weakly C^k smooth on M. \[\square\]
Proof of Theorem 2.3. If \(h : M \to N \) is a weak \(C^k \) Finsler isometry, we can define the operator \(T : C^k_b(N) \to C^k_b(M) \) by \(T(f) = f \circ h \). Let us check that \(T \) is well defined. For every \(x \in M \), there are charts \(\varphi : U \to X \) of \(M \) at \(x \) and \(\psi : V \to Y \) of \(N \) at \(h(x) \), such that \(h(U) \subset V \) and \(\psi \circ h \circ \varphi^{-1} \) is weakly \(C^k \) smooth on \(\varphi(U) \subset X \). Also, \(f \circ \psi^{-1} \) is \(C^k \) smooth on \(\psi(V) \subset Y \). Thus, by [15, Proposition 4.2], \((f \circ \psi^{-1}) \circ (\psi \circ h \circ \varphi^{-1}) = f \circ h \circ \varphi^{-1} \) is \(C^k \) smooth on \(\varphi(U) \). Therefore, \(f \circ h \) is \(C^k \) smooth on \(U \). Since this holds for every \(x \in M \), we deduce that \(f \circ h \) is \(C^k \) smooth on \(M \). Moreover, \(T \) is an algebra isomorphism with \(||T(f)|||_{C^k_b(M)} = ||f \circ h|||_{C^k_b(M)} = ||f|||_{C^k_b(N)} \) for every \(f \in C^k_b(N) \).

Conversely, let \(T : C^k_b(N) \to C^k_b(M) \) be a normed algebra isometry. Then, we can define the function \(h : H(C^k_b(M)) \to H(C^k_b(N)) \) by \(h(\varphi) = \varphi \circ T \) for every \(\varphi \in H(C^k_b(M)) \). The function \(h \) is a bijection. Moreover, \(h \) is an homeomorphism.

Recall that we identify \(x \in M \) with \(\delta_x \in C^k_b(M) \). Thus, \(h(x) = h(\delta_x) = \delta_x \circ T \). Since \(h \) is an homeomorphism, by Proposition 1.9, we obtain for every \(p \in N \) a unique point \(x \in M \) such that \(h(\delta_x) = \delta_p \). Let us check that \(T(f) = f \circ h \) for all \(f \in C^k_b(N) \).

Indeed, for every \(x \in M \) and every \(f \in C^k_b(N) \),

\[
T(f)(x) = \delta_x(T(f)) = (\delta_x \circ T)(f) = h(\delta_x)(f) = \delta_{h(x)}(f) = f(h(x)) = f \circ h(x).
\]

Now, from Proposition 2.4 and Lemma 2.5 we deduce that \(h \) is a weak \(C^k \) Finsler isometry.

Remark 2.6. It is worth mentioning that, for Riemannian manifolds, every metric isometry is a \(C^1 \) Finsler isometry. This result was proved by S. Myers and N. Steenrod [21] in the finite-dimensional case and by I. Garrido, J.A. Jaramillo and Y.C. Rangel [12] in the general case. Also, S. Deng and Z. Hou [5] obtained a version for finite-dimensional Riemannian-Finsler manifolds. Nevertheless, there is no a generalization, up to our knowledge, of the Myers-Steenrod theorem for all Finsler manifolds. Thus, for \(k = 1 \) we can only assure that the metric isometry obtained in Theorem 2.3 is weakly \(C^1 \) smooth.

Let us finish this note with some interesting corollaries of Theorem 2.3. First, recall that every separable Banach space with a Lipschitz \(C^k \) smooth bump function satisfies condition (A.2) and every WCG Banach space with a \(C^1 \) smooth bump function satisfies condition (A.1) for \(k = 1 \).

Corollary 2.7. Let \(M \) and \(N \) be complete, \(C^1 \) Finsler manifolds that are \(C^1 \) uniformly bumpable and are modeled on WCG Banach spaces. Then \(M \) and \(N \) are weakly \(C^1 \) equivalent as Finsler manifolds if, and only if, \(C^1_b(M) \) and \(C^1_b(N) \) are equivalent as normed algebras. Moreover, every normed algebra isomorphism \(T : C^1_b(N) \to C^1_b(M) \) is of the form \(T(f) = f \circ h \) where \(h : M \to N \) is a weak \(C^1 \) Finsler isometry.

Corollary 2.8. Let \(M \) and \(N \) be complete, separable \(C^k \) Finsler manifolds that are modeled on Banach spaces with a Lipschitz and \(C^k \) smooth bump function. Then \(M \) and \(N \) are weakly \(C^k \) equivalent as Finsler manifolds if and only if \(C^k_b(M) \) and \(C^k_b(N) \) are equivalent as normed algebras. Moreover, every normed algebra isomorphism \(T : C^k_b(N) \to C^k_b(M) \) is of the form \(T(f) = f \circ h \) where \(h : M \to N \) is a weak \(C^k \) Finsler isometry. In particular, \(h \) is a \(C^{k-1} \) Finsler isometry whenever \(k \geq 2 \).
Since every weakly C^k smooth function with values in a finite-dimensional normed space is C^k smooth and every finite-dimensional C^k Finsler manifold is C^k uniformly bumpable [18], we obtain the following Myers-Nakai result for finite-dimensional C^k Finsler manifolds.

Corollary 2.9. Let M and N be complete and finite dimensional C^k Finsler manifolds. Then M and N are C^k equivalent as Finsler manifolds if, and only if, $C^k_b(M)$ and $C^k_b(N)$ are equivalent as normed algebras. Moreover, every normed algebra isomorphism $T : C^k_b(N) \to C^k_b(M)$ is of the form $T(f) = f \circ h$ where $h : M \to N$ is a C^k Finsler isometry.

We obtain an interesting application of Finsler manifolds to Banach spaces. Recall the well-known Mazur-Ulam Theorem establishing that every surjective isometry between two Banach spaces is affine.

Corollary 2.10. Let X and Y be WCG Banach spaces with C^1 smooth bump functions. Then X and Y are isometric if, and only if, $C^1_b(X)$ and $C^1_b(Y)$ are equivalent as normed algebras. Moreover, every normed algebra isomorphism $T : C^1_b(Y) \to C^1_b(X)$ is of the form $T(f) = f \circ h$ where $h : X \to Y$ is a surjective isometry. In particular, h and h^{-1} are affine isometries.

References

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

E-mail address: jaramil@mat.ucm.es, marjim@mat.ucm.es, lfsanchez@mat.ucm.es