Search for Very-High-Energy Gamma Rays from the $z = 0.896$ Quasar 4C +55.17 with the MAGIC telescopes

Affiliations can be found after the references

Submitted 21 February 2014
1 INTRODUCTION

Gamma-ray astronomy has rapidly grown in recent years thanks to the development of Imaging Atmospheric Cherenkov Telescopes (IACTs), which are able to observe gamma rays at very high energies (VHE; > 30 GeV), such as the High Energy gamma-ray Spectroscopic System (H.E.S.S.; [Aharonian et al. 2006a]), the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC; [Aleksić et al. 2012]) telescopes, and the Very Energetic Radiation Imaging Telescope Array System (VERITAS; [Nepomuk Otte & the VERITAS collaboration 2009]). Space telescopes observing in the GeV energy band such as the Large Area Telescope (LAT) on board the Fermi satellite ([Atwood et al. 2009]) have also substantially contributed to progress in the field.

VHE photons, with energies above a characteristic energy, are strongly attenuated through electron-positron pair creation in the extragalactic background light (EBL). This characteristic EBL absorption energy is defined by the photon energy at which the pair creation optical depth is unity. The characteristic energy depends on the source’s redshift. The attenuation results in a much softer spectrum at Earth than that of the intrinsic spectrum of a source (e.g., [Nikishov 1962; Gould & Schréder 1966; Stecker, de Jager, & Salamon 1992]). The characteristic energy is lower for sources with higher redshift. Thus, the detection of VHE gamma rays from distant sources is a challenge for IACTs. On the other hand, this absorption process brings a unique opportunity to study the EBL (e.g., [Stecker & de Jager 1992; Stanev & Franceschini 1998]), which is difficult to be measured directly due to strong Galactic foregrounds (e.g., [Hauser & Dwek 2001; Dwek & Krennrich 2013]). The EBL is mainly interpreted as stellar and dust emission integrated over the cosmic history. Therefore, VHE gamma-ray observations can be used to extract information on the imprinted cosmic stellar and galaxy evolution.

Observations of VHE gamma-ray sources with different redshifts allow us to investigate the EBL in different wavelengths and hence to examine underlying astrophysics and cosmology at different epochs. In particular, VHE gamma-ray observations of BL Lac objects at z ≤ 0.2 have constrained EBL models from optical to infrared wavelengths (e.g., [Aharonian et al. 2006a, 2007]). The most distant object ever detected in the VHE energy range, with firmly confirmed redshift, is the flat spectrum radio quasar (FSRQ) 3C 279 (z = 0.536; [Albert et al. 2008]). This source has also been utilized to constrain EBL models on the assumption that the intrinsic power-law index in the VHE range is softer than −1.5. Recently, two sources with possibly higher redshifts have been detected, namely KUV 00311-1938 ([Becherini et al. 2012]) with z ≥ 0.506 ([Pita et al. 2012]) and PKS 1424+240 with z ≥ 0.6035 ([Acciari et al. 2013; Furniss et al. 2013]), but they have not been used to estimate the EBL density due to the uncertainty in their redshift measurements. Moreover, different authors have recently claimed the detection of the EBL imprint by the statistical analyses of the spectra of blazars ([Ackermann et al. 2012; Abramowski et al. 2013; Domínguez et al. 2013]). In particular, the analysis of [Ackermann et al. 2012] covers the wide redshift range (0.2 ≤ z ≤ 1.6) using LAT data. [Abramowski et al. 2013] focus on lower redshift blazars detected by H.E.S.S. (z < 0.2). [Domínguez et al. 2013] use the multi-wavelength data of the spectral energy distribution (SED) of blazars to estimate the cosmic gamma-ray horizon from the local Universe to z ∼ 0.5 by using an EBL-model-independent technique. Although the LAT has unveiled the EBL at high redshifts (z ∼ 1), the detection of sources with high redshifts in the VHE range allows us to test different (longer than in the LAT energy range) wavelengths of the EBL which have not yet been investigated.

* Corresponding authors: H. Takami, email: takami@post.kek.jp, J. Sitarek, email: jsitarek@ifae.es, A. Domínguez, email: albertod@ucr.edu, D. Paneque, email: dpanequemppmu.mpdg.de
The MAGIC telescopes have achieved an analysis energy threshold below 100 GeV, and therefore are an ideally suited instrument among existing IACTs to study high-redshift sources.

In this paper we report the observational results of the distant quasar 4C +55.17 (z = 0.896) by the MAGIC telescopes. This source was recognized as a promising high-redshift candidate for VHE emission from the first LAT AGN Catalog (1LAC; Abdo et al. 2010). Moreover, 4C +55.17 is also a promising source candidate for VHE detection by the Fermi LAT collaboration in a dedicated high-energy data analysis (private communication, September 2010), and by Neronov, Semikoz, & Vovk (2011). The spectrum in the LAT energy range is hard and consistent with a power-law $dN/dE \propto E^{-\alpha}$ with $\alpha = 2.05 \pm 0.03$ in the range from 100 MeV to 100 GeV, not showing significant flux variability in the ILAC (Abdo et al. 2010). The spectral hardness of gamma-ray sources is particularly important to study the EBL because of the limited sensitivities of IACTs; harder sources can provide more photons with energies above the characteristic EBL absorption energy, allowing for studies with better precision. Even with a spectral break at the energy of several GeV recently reported (Ackermann et al. 2011, McConville et al. 2011, Neronov et al. 2012) this source is still a good candidate for a distant VHE gamma-ray emitter.

This source is a radio-loud active galaxy with the firmly confirmed redshift of $z = 0.896$ estimated from broad optical emission lines in its spectrum (Wills et al. 1990, Adelman-McCarthy et al. 2008). It had been categorized as a FSRQ, but interestingly the classification has recently been questioned due to its morphological and spectroscopic properties which are distinct from those of other FSRQs (Rossetti et al. 2003). FSRQs are characterized by a centrally concentrated radio core with high brightness temperature and highly variable flux. However, the brightness temperature of this source is 2×10^8 K at 5 GHz (Taylor et al. 2009), which is much lower than that of the other known quasar-hosted gamma-ray blazars (McConville et al. 2011), and a light curve in the LAT energy range is consistent with steady emission (Furniss & McConville 2013). Note that only strong variability can be significantly detected by the limited number of detected photons by the LAT. Radio morphology has indicated that 4C +55.17 belongs to a family of young radio galaxies, that is, compact symmetric objects (see O’Dea 1998, for a review), which are a smaller version of classical Fanaroff-Riley (FR) II radio galaxies (Rossetti et al. 2005). The low flux variability of this source also supports this indication. Importantly, this type of compact objects is a promising source candidate of ultra-high-energy cosmic rays (Takami & Horiuchi 2011) similarly to the lobes of FR II radio galaxies (e.g., Biermann & Strittmatter 1987, Takahara 1996, Rachen & Biermann 1993). McConville et al. (2011) model the multi-wavelength SED of this source by using both compact symmetric object and FSRQ interpretations. The authors suggest that infrared and hard X-ray observations can help to distinguish between the two models, but VHE gamma rays also provide a clue for the distinction despite the significant EBL absorption. Also, a hadronic interpretation predicts a hard intrinsic spectrum in the VHE range (Kino & Asada 2011). Therefore, observations of this source in the VHE range can provide an important clue to its nature and radiation mechanism.

This paper is laid out as follows. We describe the details of the MAGIC observations and data analysis in Section 2. Then, results are shown in Section 3. Implications from the results are discussed in Section 4 and a summary is presented in Section 5.

2 OBSERVATIONS AND ANALYSIS

The MAGIC stereoscopic system consists of two IACTs each with a mirror dish diameter of 17 m, located at 2200 m above sea level at the Roque de los Muchachos, La Palma in Canary Island (28.75°N, 17.86°W). The MAGIC telescopes have been operating in stereoscopic mode since the end of 2009, which provided an analysis energy threshold below 100 GeV and an integral sensitivity of 0.76 ± 0.03% of the Crab nebula flux above 300 GeV for 50-hour observations (Aleksić et al. 2012).

4C +55.17 was observed from November 2010 to January 2011 for 21 dark nights and a total of 35 hours in stereoscopic mode. The data were taken at medium zenith angles (from 27° to 37°) to achieve an energy threshold below 100 GeV. The observations were performed in the so-called wobble mode (Fomin et al. 1994): i.e. the target source direction has the offset of 0.4° from the camera centre, allowing for taking both signal and background data simultaneously. The observations were performed with two pointing directions; slightly off-sources at the same declination as the source but at an angular distance of ±0.4 degree in right ascension. The direction of the wobble offset is inverted every 20 minutes to minimize systematic errors originating from possible exposure inhomogeneities.

Data were selected based on the rate of background events being in a regular range for MAGIC observations. The data selection yielded 27.73 hours of effective time. Those data were analyzed following the standard procedure (Aleksić et al. 2012) with the MAGIC Analysis and Reconstruction Software (MARS; Moralejo et al. 2009). The analysis cuts to extract gamma-ray signals from the hadronic background were optimized independently of these observational data by means of data from Crab nebula and dedicated Monte-Carlo simulations of gamma-ray induced showers.

3 RESULTS

An initial check of the energy threshold, for these observations, were made using Monte-Carlo simulations of gamma-ray induced showers. We selected Monte-Carlo events simulated under an assumed spectrum following the telescope responses after application of the same experimental cuts that were applied to the data, and made the histogram of the events as a function of input energies. The energy at the maximum of the histogram is defined as the analysis threshold. This is the standard definition of the analysis threshold for IACTs.

We assume the incident gamma-ray spectrum to be a power-law with index $\alpha = 4$. This is expected by the LAT spectrum and plausible EBL models at around 100 GeV.
Note that the spectral index of the LAT spectrum above 2 GeV (up to 60 GeV) is $\alpha = 2.2$ in [McConville et al. 2011] and the spectrum above 10 GeV can be characterized with a power-law function of $\alpha = 2.43 \pm 0.18$ [Ackermann et al. 2013]. As a result, the energy threshold was found to be ~ 100 GeV. A gamma-ray signal from 4C +55.17 was searched for following the standard method using the so-called θ^2 distribution, i.e., a distribution of the squared angular distance between the reconstructed arrival directions of the events and the source nominal position [Daum et al. 1997].

The θ^2 distributions of the observed data with the corresponding energy threshold of 100 GeV (i.e., images with the total number of reconstructed photoelectrons ≥ 50 in each telescope), shown in Figure 1, indicate no significant excess of gamma rays compared to background in the direction of 4C +55.17. The significance estimated using Eq. 17 of Li & Ma [1983] is close to zero. Here, a region with $\theta^2 < 0.026 \text{ deg}^2$ is used to estimate the significance. This choice is standard for θ^2 cut for low-energy ($\lesssim 100$ GeV) sources. The corresponding significance map is shown in Figure 2. It also confirms that there is no significant signal from 4C +55.17.

The upper limits on the gamma-ray flux are calculated by adding a cut in estimated photon energy to the data. The upper limits of integrated gamma-ray flux were estimated on the assumption of $\alpha = 4$. The integral upper limit above 100 GeV is $9.4 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$ at 95% confidence level. A flux upper limit above 200 GeV is also calculated as $2.5 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$ at 95% confidence level for comparison with a recent upper limit by VERITAS [2.6 $\times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$ for $E > 200$ GeV; Errando 2011]. The MAGIC upper limit is slightly lower than the upper limit of VERITAS due to the longer observation time; the VERITAS observations were performed for 17.7 hours. Further observations with VERITAS (for a total observation time of 45 hours, Furniss & McConville 2013), resulting in a more constraining upper limit above 150 GeV. Thanks to the lower energy threshold of MAGIC here we report an upper limit at lower energies.

We calculate differential upper limits in the 4 energy bins of equal width in logarithmic scale in the energy range between 80 GeV and 500 GeV. The spectral indices of the gamma-ray distributions were assumed to be $\alpha = 4$ in the first bin and $\alpha = 5$ in the other following bins because of a sharp cutoff at ~ 100 GeV predicted from recent EBL models (e.g., Franceschini, Rodighiero, & Vaccari 2008; Domínguez et al. 2011; Gilmore et al. 2012; Inoue et al. 2013). As discussed above, the analysis threshold for IACTs is not a sharp threshold, and thus we can report on the energy range > 80 GeV. The results are tabulated in Table 1 and plotted in Figure 3 at characteristic energies.

The upper limits on the flux depend on the assumed spectral indices for gamma-ray spectra. In order to evaluate the uncertainty of the upper limits due to this dependence, we calculate the upper limits on the assumption of harder spectra by one unit, i.e., the spectral index of $\alpha = 3$ for integral upper limits, and $\alpha = 3$ in the first bin and $\alpha = 4$ in the following bins for differential limits. As a result, the integral upper limits change by less than 10% for both > 100 GeV and > 200 GeV. On the other hand, the resultant differential upper limits change within $\sim 30\%$ in the three high-energy bins and by about a factor of two in the first bin. The latter is because of a rapid change of collection area as a function of gamma-ray energy. The collection area of IACTs depends strongly on the primary gamma-ray energy. The average number of Cherenkov photons is smaller for lower energy gamma rays, making it less probable to trigger IACTs even if the shower falls within the light pool. This results in a very steep collection area around the energy threshold, and therefore strong dependence on the collection area in a finite energy bin on the assumed spectral shape.

4 DISCUSSIONS

We interpret the derived upper limits of the gamma-ray flux with 'low-flux' EBL models [Kneiske et al. 2004; Franceschini et al. 2008; Domínguez et al. 2011; Gilmore et al. 2012; Inoue et al. 2013]. Note that 'low-flux' means that the flux in the EBL models are close to that given by galaxy counts (e.g., Maddalozzo & Pozzetti 2000; Fazio et al. 2004; Keenan et al. 2010).

A recent study shows that the LAT spectrum of 4C +55.17 up to ~ 60 GeV can be well fit by a broken power-
Table 1. Differential upper limits of the flux and the numbers of events in on- and off-positions

<table>
<thead>
<tr>
<th>Range [GeV]</th>
<th>U.L. [cm$^{-2}$ s$^{-1}$]</th>
<th>U.L. [erg cm$^{-2}$ s$^{-1}$]</th>
<th>α assumed</th>
<th>N_{on}</th>
<th>N_{off}</th>
<th>Sign. of excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>79 - 126</td>
<td>1.0×10^{-10}</td>
<td>1.3×10^{-11}</td>
<td>4</td>
<td>6874</td>
<td>6711</td>
<td>1.4σ</td>
</tr>
<tr>
<td>126 - 200</td>
<td>1.6×10^{-11}</td>
<td>3.0×10^{-12}</td>
<td>5</td>
<td>1846</td>
<td>1847</td>
<td>0.0σ</td>
</tr>
<tr>
<td>200 - 316</td>
<td>5.7×10^{-11}</td>
<td>2.0×10^{-12}</td>
<td>5</td>
<td>714</td>
<td>706</td>
<td>0.2σ</td>
</tr>
<tr>
<td>316 - 501</td>
<td>3.8×10^{-12}</td>
<td>2.1×10^{-12}</td>
<td>5</td>
<td>311</td>
<td>293</td>
<td>0.7σ</td>
</tr>
</tbody>
</table>

Figure 3. Upper limits of differential flux at 95 % C.L. obtained in this work (circle, red). Locations of the arrows correspond to characteristic energies in the energy ranges where the differential upper limits are calculated. The LAT spectrum derived by McConville et al. (2011) square, black and its spectral fit with a broken power-law function (assumed to be the intrinsic spectrum) is depicted with black square points and the solid gray line. The intrinsic spectrum attenuated with four state-of-the-art EBL models is also shown: Franceschini et al. (2008) with a long-dashed green curve, Domínguez et al. (2011) with a dashed blue curve, Gilmore et al. (2012) with a dash-dotted light-blue curve, and Inoue et al. (2013) with a dotted magenta curve.

5 SUMMARY AND CONCLUSION

The MAGIC telescopes observed 4C +55.17 for 35 hours (27.73 hours of effective time with good quality data) from November 2010 to January 2011 in a wobble mode. No significant gamma-ray signal was found above 100 GeV. Instead, both integral and differential upper limits of gamma-ray flux were derived. The integral upper limits are 9.4×10^{-12} cm$^{-2}$ s$^{-1}$ above 100 GeV and 2.5×10^{-12} cm$^{-2}$ s$^{-1}$ above 200 GeV. The differential upper limits are tabulated in Table 1. The derived limits are close to and consistent with the power-law spectrum extended from the LAT energy range attenuated by low-flux EBL models.

McConville et al. (2011) claimed that a 50-hour observation with MAGIC would suffice to detect this source. However, the strict upper limits from ~30 hours of observation do not confirm this prediction, due to the medium zenith angle of the observations ($\gtrsim 27^\circ$), which increases the analysis threshold and suppress the performance at lowest energies (Aleksić et al. 2012). In fact, according to our estimates, MAGIC would require ~100 hours in order to have a 5σ detection from 4C +55.17 under the optimistic assumption of the power-law extension adopted in this study and relatively optically-thin EBL models such as Franceschini et al. (2008) and Domínguez et al. (2011). Af-
ter the observation of 4C +55.17, the camera of the MAGIC I telescope was upgraded, which improved the sensitivity for the lowest energies (Sitarek et al. 2013). A new trigger system for stereoscopic observations, so-called sum-trigger (Haefner et al. 2011), will improve the sensitivity below 100 GeV significantly. These may help detect this source in the VHE range. Detailed studies on its spectrum beyond detection would require a sensitivity several times better than current ground-based gamma-ray instruments, and hence it may be a task for the next generation of instruments such as the Cherenkov Telescope Array (CTA; Actis et al. 2011; Acharya et al. 2013).

ACKNOWLEDGMENTS

We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the Spanish MICINN is gratefully acknowledged. This work was also supported by the CPAN CSD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 127740 of the Academy of Finland, by the DFG Cluster of Excellence ‘Origin and Structure of the Universe’, by the DFG Collaborative Research Centers SFB823/C4 and SFB882/C4, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0.

REFERENCES

Acharya B. S. et al., 2013, Astropart. Phys., 43, 3
Aharonian F. et al., 2006a, A&A, 457, 899
Aharonian F. et al., 2006b, Nature, 440, 1018
Albert J. et al., 2008, Science, 320, 1752
Becherini Y., Boisson C., Cerruti M., H. E. S. S. Collab.
Daum A. et al., 1997, Astropart. Phys., 8, 1
Errando M., VERITAS Collaboration, 2011, Proc. 32nd Int. Cosmic Ray Conf. (Beijing), Vol. 8, p. 133
Haefner D., Schweizer T., Dazzi F., Corti D., 2011, Proc. 32nd Int. Cosmic Ray Conf. (Beijing), Vol. 9, p. 251
Takahara F., 1990, Prog. Theor. Phys., 83, 1071
Search for VHE Gamma Rays from 4C +55.17 with the MAGIC telescopes

1 IFAE, Edifici Cn., Campus UAB, E-08193 Bellaterra, Spain
2 Università di Udine, and INFN Trieste, I-33100 Udine, Italy
3 INAF National Institute for Astrophysics, I-00136 Rome, Italy
4 Università di Siena, and INFN Pisa, I-53100 Siena, Italy
5 Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia
6 Max-Planck-Institut für Physik, D-80805 München, Germany
7 Universidad Complutense, E-28040 Madrid, Spain
8 Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain
9 University of Łódź, PL-90236 Łódź, Poland
10 Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany
11 ETH Zurich, CH-8093 Zurich, Switzerland
12 Universität Würzburg, D-97074 Würzburg, Germany
13 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain
14 Università di Padova and INFN, I-35131 Padova, Italy
15 Technische Universität Dortmund, D-44221 Dortmund, Germany
16 Inst. de Astrofísica de Andalucía (CSIC), E-18080 Granada, Spain
17 Università dell’Insubria, Como, I-22100 Como, Italy
18 Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
19 Institut de Ciències de l’Espai (IEEC-CSIC), E-08193 Bellaterra, Spain
20 Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan
21 Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland
22 Inst. for Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria
23 Universitat de Barcelona (ICC, IEEC-UB), E-08028 Barcelona, Spain
24 Università di Pisa, and INFN Pisa, I-56126 Pisa, Italy
25 now at Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
26 now at Department of Physics & Astronomy, UC Riverside, CA 92521, USA
27 now at Finnish Centre for Astronomy with ESO (FINCA), Turku, Finland
28 also at INAF-Trieste
29 also at Instituto de Fisica Teorica, UAM/CSIC, E-28049 Madrid, Spain
30 now at: Stockholm University, Oskar Klein Centre for Cosmoparticle Physics, SE-106 91 Stockholm, Sweden
31 now at GRAPPA Institute, University of Amsterdam, 1098XH Amsterdam, Netherlands