First directional European palaeosecular variation curve for the Neolithic based on archaeomagnetic data

Keywords:
secular variation
archaeomagnetism
rock-magnetism
thermoremanence
Neolithic
archaeology

ABSTRACT

Neolithic, Chalcolithic and Bronze Age anthropogenic cave sediments from three caves from northern Spain have been palaeomagnetically investigated. 662 oriented specimens corresponding to 39 burning events (ash-carbonaceous couplets) from the three sites with an average of 16 samples per fire were collected. 26 new archaeomagnetic directions have been obtained for the time period ranging from 5500 to 2000 yr cal. BC. These results represent the oldest archaeomagnetic directions obtained from burnt archaeological materials throughout all Western Europe. Magnetisation is carried by pseudo-single domain low-coercivity ferromagnetic minerals (magnetite, maghaemite). Rock-magnetic experiments indicate a thermoremanent origin of the magnetisation although a thermochemical magnetisation cannot be excluded. Combination of the new data presented here and the recent updated Bulgarian database allows us to propose the first European palaeosecular variation (PSV) curve for the Neolithic. A bootstrap method was applied for the curve construction using penalised cubic B-splines in time. The new palaeosecular variation curve is well constrained from 6000 BC to 3700 BC, the period with the highest density of data, showing a declination maximum around 4700 BC and a minimum in inclination at 4300 BC, which are not recorded by the recent global CALS10K.1b and regional SCHA.DIF.8K models due to the use of lake-sediment data. Dating resolution by using the proposed PSV curve oscillates from approximately ±30 yr to ±200 yr for the period 6000 to 1000 yr BC, reaching similar resolution as radiocarbon dating. Considering the good preservation, age-control and widespread occurrence of burnt archaeological materials across Southern Europe, they represent a new source of data for geomagnetic field modelling, as well as for archaeomagnetic dating.

1. Introduction

Knowledge of long-term variation of the Earth’s magnetic field (palaeosecular variation) is a forefront research area in Solid Earth Sciences. Determinations of the palaeofield are necessary to expand global and regional geomagnetic field models, whose applications range from the reconstruction of field geometry to

...
archaeomagnetic dating. Reconstruction of geomagnetic field variations prior to instrumental measurements (last few centuries, e.g. Alexandrescu et al., 1997; Jonkers et al., 2003), has been traditionally addressed through the analysis of well-dated magnetised sediments, lavas or archaeological burnt material. Sedimentary sequences provide relatively long and continuous palaeomagnetic records with broad geographical distribution. However, their magnetisation lock-in is delayed, due to the mechanism of remanence acquisition. Moreover, the magnetisation in sedimentary contexts is subjected to several factors that could cause errors in the palaeomagnetic record such as flattening or bioturbation, among others. Consequently, geomagnetic models that incorporate sedimentary data introduce a “smoothing effect” producing low resolution reconstructions of geomagnetic field variations (e.g. Donadini et al., 2009; Korte et al., 2011; Pavón-Carrasco et al., 2010). In contrast, burnt archaeological materials and lava flows usually carry a stable thermoremanence which gives spot information of the palaeofield and are thus considered the best records of the geomagnetic field.

In order to obtain a detailed picture of the geomagnetic field variation, the classical approach is to develop local palaeosecular variation (PSV) curves from well-dated, in situ archaeological materials carrying a thermoremanence. In recent years, new or updated PSV curves have been published in different European regions covering reasonably well the last 2–3 millennia (Gallet et al., 2002; Gómez-Paccard et al., 2006; Hervé et al., 2013; Kovacheva et al., 2009; Marton and Ferencz, 2006; Schnepf and Lano, 2005, 2006; Téma et al., 2006; Téma and Kondopoulou, 2012; Zananiri et al., 2007). In spite of great advances, at present, very few archaeomagnetic directions are available in Europe before the third millennium BC (Fig. 1A-B). No archaeomagnetic information from Western Europe are provided by the global database, with the only exception of a study in the UK carried out during the 1960s (Aitken and Hawley, 1967) and one direction from the fourth millennium BC from France (Hervé et al., 2013). The only directional data currently available in Europe prior to this age come from Eastern Europe (Aidona and Kondopoulou, 2012; Burlatskaya et al., 1986; Márton, 2009; Kovacheva et al., 2008). One of the reasons that explain this lack of data is the unknown suitability as geomagnetic field recorders has not been yet fully explored. The objective of this work is twofold. First, to show the suitability of anthropogenic cave sediments to obtain archaeomagnetic data through a comprehensive palaeomagnetic and rockmagnetic study. Second, to design a European PSV curve for the 6000–1000 yr BC time period exclusively based on archaeomagnetic data. The results obtained and their potential application to dating (Lanos, 2004; Pavón-Carrasco et al., 2011) are discussed.

2. Materials and methods

2.1. Description of anthropogenic cave sediments

Anthropogenic cave sediments are known in the French archaeological literature as *fumiers* or “burnt animal dung layers” [English] and are interpreted as a product of pastoral activities (Brochier, 2002). The main goal of these practices was to disintegrate the space and reduce the volume of residues generated by the livestock. The Holocene stratigraphy of these sites exhibits a characteristic succession of burnt levels alternating with other few (or un-)burnt layers, generating sequences of rather variable textural and colour (Fig. 2A-B). This alternation between combustion episodes and unburnt levels generates facies’ groups whose transition may be gradual or abrupt. As a whole they make us think facies successions of centimetre and even millimetre scale, with sub-horizontal stratification or following the topography of the substrate. Slightly convex morphologies are occasionally observed probably related to the accumulation of waste to be burned. The dimensions, morphology and thickness of the ashes are somewhat variable, reaching up to 2–3 meters long and several centimetres of thickness. In section, they are occasionally observed as lenses with abrupt and/or wedged-shape contours and in most cases as horizontal and regular sheets. The presence of archaeological artefacts (generally poor) within these sequences derived from domestic activities (e.g. pottery) suggests that humans lived with the animals in the caves, although occupying differentiated areas. Most
probably, burning of residuals was carried out at the same place where animals were penned.

In spite of there being no explicit consensus to describe/classify these deposits it has been addressed through a facies system relatively uniform among sites. This is logical since the formation processes of these anthropogenic sediments are essentially the same and their facies composition is more or less indistinguishable from one site to another (Angelucci et al., 2009). Both in geocartographic and archaeological studies (e.g. Boschian and Montagnari-Kokelj, 2000; Macphail et al., 1997) as well as in our own observations, several characteristic facies in the burnt levels have been identified which we synthesised as follows: white and/or grey ashes of variable thickness (~2–10 cm) over thin (~2 cm) subjacent carbonaceous facies of dark colour with organic material (Fig. 2B).

According to sedimentological studies (Boschian and Montagnari-Kokelj, 2000; Brochier et al., 1992) and experimental dung-burning recreations (Vergés, 2011) this facies arrangement corresponds to a single burning event. The ash thickness essentially depends on the amount of fuel burnt which on the other hand, undergoes a considerable reduction of its initial volume (up to 80%) during combustion (Brochier, 2002; Vergés, 2011). This certainly favoured the compaction and reduced the porosity of ashes. Preservation of these burning events is favoured by the fast sedimentation rates of these deposits, usually of the order of millimetres per year (Angelucci et al., 2009). Each burning event is stratigraphically sealed by the rapid burial of the upper level preventing alteration. The combustion itself is a preservation factor as it inhibits the breakdown of the mineral fraction present in the organic remains (Angelucci et al., 2009). Nevertheless, these deposits may be locally affected by diverse syn- and/or post-depositional processes (e.g. bioturbation), some of them visible at the macroscopic scale. Recent studies propose the palaeomagnetic technique as a useful indicator of post-depositional processes (Carrancho et al., 2012).

2.2. Sites studied

The studied materials correspond to Neolithic, Chalcolithic and Bronze Age burnt levels in “El Mirador” and “El Portalón” Caves (Sierra de Atapuerca, Burgos, Spain) and “El Mirón Cave” (Ramales de la Victoria, Cantabria, Spain) (Figs. 1A, 2, Supplementary Figs. 1–6 and Table 1). Extensive excavations carried out at these sites have exposed stratified deposits rich in archaeological and palaeontological remains of Upper Pleistocene and Holocene age (Carretero et al., 2008; Straus and González Morales, 2012; Vergés et al., 2002, 2008). Specifically, the Holocene series contain numerous burning events (ash lenses) exposed in various stratigraphic sections. We briefly describe here the most relevant stratigraphic, sedimentological and archaeological aspects of interest with regard to the three sites studied. Description will only focus on the Holocene stratigraphy where the burning events sampled are located.

2.2.1. El Mirador Cave

El Mirador Cave (42°20'58" N; 3°30'33" W; 1033 m above sea level) is located on the southernmost slope of the Sierra de Atapuerca (Burgos, Spain; Supplementary Fig. 1). Archaeological works began systematically at the site in 1999 with a test pit (6 m²) in the central sector of the western half, uncovering a stratigraphic sequence with Upper Pleistocene and Holocene levels. The Holocene series contains a significant presence of burnt levels produced by the in situ burning of vegetal materials and animal dung, mainly ovicaprine, generated by the use of the cave as fold of domestic livestock (Vergés et al., 2002, 2008). El Mirador is currently one of the most complete, continuous and well-dated anthropogenic cave sequences known in the Mediterranean Europe.

The Holocene stratigraphy is articulated in 24 archaeological units along 5.5 m of depth (Supplementary Fig. 2). Archaeologically, two main sequences can be distinguished: the lower one with 3.5 m of Neolithic units (MIR6-24) and a 1.6 m upper one belonging to the Bronze Age (MIR3-4). The unit MIR5, which separates the Neolithic sequence of the Bronze Age, is a sedimentary hiatus in which the cave was not occupied for about a thousand years (Vergés et al., 2002). Sedimentation rate of Neolithic units is on average of 1 mm/yr, although it reaches peak values of 15 mm/yr between units MIR16-11 (Angelucci et al., 2009). The numerous cases of anatomical connection of skeletal elements documented in the unburnt facies indicate a high preservation degree of the Neolithic levels. Samples collected and analysed correspond to three successive sampling campaigns (2005, 2006 and 2007). Details concerning the sampled burning events, stratigraphic provenance, number of samples as well as the chronological information are compiled in Table 1.

2.2.2. El Portalón Cave

El Portalón de Cueva Mayor (42°20'53" N; 3°31'02" W; 1034 m above see level) is also part of the archaeo-palaeontological karstic complex of Atapuerca sites (Burgos, Spain). Although isolated studies have been carried out during the twentieth century, systematic excavations have been conducted since year 2000 at the site. A new stratigraphic sequence with Upper Pleistocene and Holocene levels, based on more than thirty radiocarbon dates spanning from 30 000 to 1000 yr BP, has been recently published (Carretero et al., 2008) (Supplementary Fig. 3).

The Holocene infilling contains Mesolithic, Neolithic, Chalcolithic, Early and Middle Bronze Age, Iron Age, Roman and Medieval occupations (Carretero et al., 2008). Its archaeological record consists mainly of pottery, stone and bone tools, personal ornament items, metallic objects and human, faunal and archaeobotanical remains, among others. The site seems to have worked a long time as habitat area, including activities of animal penning at the upper levels as well as sepulchral space at other times. The stratigraphic sequence consists of 11 levels distinguishing two main different units: Pleistocene (level 10) and Holocene (levels 9 to 0). The Holocene unit with a maximum thickness of 630 cm is composed
of relatively homogeneous sediments and is rich in archaeological remains. Sampled materials correspond to three burning events exposed in the North and Northeast sections of the Holocene stratigraphy. Their stratigraphic and chronological details are compiled in Table 1. A total of 67 oriented specimens of ash and carbonaceous samples were collected. Occasionally, mechanical alterations of the sediment induced by bioturbation were identified. However, these are well-located and the preservation state of the burning events can be considered as good.

2.2.3. El Miron Cave

El Miron Cave (43°14'48" N, 3°27'05" W; 260 m above sea level) is located in the upper valley of the Asón river (Ramales de la Victoria, Cantabria, Spain). Archaeological excavations since 1996 have documented a long cultural sequence with spans ranging the late Middle Palaeolithic to the early Bronze Age, including also traces of medieval and modern activities. Currently, the site has 78 radiocarbon dates ranging from 41 000 BP (uncal.) to AD 1400 [Straus and Gonzalez Morales, 2003, 2007, 2010, 2012], to which we refer for details of the Pleistocene succession.

The burning events sampled correspond to the Neolithic, Chalcolithic and Bronze Age levels and were identified in the Cabin Area (OV; Supplementary Fig. 5) and in the adjacent Trench (MV; Supplementary Fig. 6). Neolithic occupations were identified in the OV (Cabin, levels 8–10) and in the West section of the adjacent Trench (MV, levels 303–303.3). The Neolithic levels of the Trench mainly consist of a series of well-defined burnt levels with pottery, lithic and domesticated animal remains (mainly sheep/goat). In level 303.3, an individual charred grain of wheat (Triticum dicoccum) was dated to 5500 BP (~4400 cal. BC), providing the oldest direct evidence of agriculture in the Cantabrian region [Peña Chocarro et al., 2005]. The Mid-Vestibule Trench levels 303–303.3 physically correlate with OV levels 10–8, dated between 4600 and 3500 cal. BC [Straus and Gonzalez Morales, 2003].

The Chalcolithic levels (7–4) in the OV consist of a massive succession of ash and charcoal lenses. The Chalcolithic attribution is based on the available dates and by the typology of artefacts (including characteristic arrowheads), with an age of around 2500 cal. BC (Straus and Gonzalez Morales, 2003). OV levels 2 and 3 correspond to Bronze Age with an estimated age of around 2100 cal. BC [Straus and Gonzalez Morales, 2003]. They contain pottery fragments, domesticated animal remains (especially cattle), a copper
pin and evidences of in situ burning related with metallurgical activities. A total of 191 oriented burnt samples from 15 burning features were collected at the site. Details about their stratigraphic provenance, corresponding archaeological unit and ages considered are compiled in Table 1.

2.3. Sampling

Due to their non-consolidated nature, these materials could not be sampled with standard archaeomagnetic techniques so we developed an alternative sampling technique. The device consists of a non-Ferromagnetic metal tube incorporating a built-in orienting system which allows a precise geographical orientation of the samples (Supplementary Fig. 7). The device is carefully inserted in vertical stratigraphic sections where the burning events are exposed. The samples are subsequently saved in cylindrical plastic boxes (3.6 cm³) for alternating field (AF) demagnetisation and stored at low temperatures (3–4°C) until measurement to avoid chemical alterations. Similarly, representative samples for each fire were introduced by the same means into home-made plaster cubes designed for thermal demagnetisation of the natural remanent magnetisation (NRM). The plaster cubes contain a cylindrical hole with the same dimensions and volume than the plastic capsules in order to keep motionless the sample (Carrancho, 2010). Afterwards, in the lab they were properly sealed and consolidated to carry out thermal demagnetisation. The consolidation was only performed on samples collected for thermal demagnetisation which were impregnated during some days in ethyl-silicate (commercial name Silbond 40) and left to dry during 3–4 weeks. The NRM of the cubes was around two orders of magnitude lesser than the sample’s magnetisation. 662 oriented specimens corresponding to 39 burning events (ash-carbonaceous couplets) from the three sites with an average of 16 samples per fire were collected (Table 1).

2.4. Age of the materials

The ages of the investigated structures range from 5500 to 2000 yr cal. BC, but are mostly comprised between 5500 and 4000 BC (Table 1). They have been determined through radiocarbon dates on fragments of charcoal, charred seed, animal bone (one sample from Portalón Cave), tooth or organic sediment (Accelerator Mass Spectrometry – AMS, conventional or extended count). Samples from “El Mirador” and “El Portalón” Caves were analysed at Beta Analytic Inc. Laboratory (Florida, USA) and these from “El Mirón” Cave by Geochron Laboratories (Massachusetts, USA). Ages are expressed in years BC, at a ±2σ and were calculated using Calib 6.0 based on Reimer et al. (2009) (Table 1). Overall, standard deviations are mostly < 50 yr at a 2σ range which is very acceptable. Only some dates from El Mirón cave – associated to conventional or extended count radiocarbon dating – show larger standard deviations but coherent with ages from the same stratigraphic unit. Therefore, chronological adscription is highly reliable. For the three sites, we considered as chronological criteria the minimum and maximum calibrated radiocarbon ages of the upper and lower stratigraphic level, respectively.

According to this criterion, several burning events sampled within the same archaeological unit share a maximum and minimum age interval (Table 1). This is the case of various structures sampled between units 303.3 and 303 at “El Mirón” Cave and in units MIR8, 12, 15, 16 and 22 at “El Mirador” Cave. Two burning events in “Portalón Cave” (P1 and P2) correspond to the same archaeological unit. However, their stratigraphic location and the many dates available enable us to constrain well their age. Fortunately, both at “El Mirador” and “El Mirón”, the lateral continuity of some facies allow establishing stratigraphic correlations/differentiations among the different burning events. Specifically at “El Mirón”, the six datings corresponding to the early Neolithic levels (303.3–303/10; Table 1), suggest a fast sedimentation (Straus and González Morales, 2007), probably in not more than 500 yr.

2.5. Palaeomagnetic and rock-magnetic methods

Palaeomagnetic and rock-magnetic analyses were carried out at the Laboratory of Palaeomagnetism of Burgos University (Spain). Magnetic remanence measurements were made with a three-axis 2G SQUID cryogenic magnetometer (noise level ~5 × 10⁻¹² Am²). The NRM stability was analysed both by progressive alternating field (AF) and thermal demagnetisation. Stepwise progressive AF demagnetisation was done in 15–17 steps up to 100–120 mT. Thermal demagnetisation was carried out in 16 heating steps up to 680°C using a TD48-SC (ASC) thermal demagnetiser. Low-field magnetic susceptibility was measured initially and after each heating step with a KLY-4 Kappabridge (AGICO, noise level 3 × 10⁻⁵ S.I.) to monitor magnetico-chemical alterations. Characteristic Remanent Magnetisation (ChRM) directions were calculated by linear regression of the component that linearly converges towards the origin over five demagnetisation steps. Mean directions and associated statistical parameters were calculated using Fisher’s (1953) statistics.

In order to further study the magnetic properties of these materials, representative ash and carbonaceous samples from all sites were selected to carry out a full set of rock-magnetic experiments. With the aid of a Variable Field Translation Balance (MM_VFTB) we measured: progressive isothermal remanent magnetisation (IRM) acquisition curves, hysteresis loops (+1 T), backfield curves and thermomagnetic curves up to 700°C in air. Representative ash and carbonaceous samples from “El Mirador Cave” were also selected to carry out thermal demagnetisation of the IRM in three orthogonal axes following Lowrie’s (1980) method. The applied fields were 2 T, 0.4 T and 0.12 T for Z, X and Y axes, respectively. Thermal demagnetisation was carried out in 16 temperature steps distributed between room temperature and 680°C.

3. Results

3.1. Stability of NRM and quality selection criteria

The natural remanent magnetisation (NRM) both of ashes and carbonaceous facies exhibits two distinctive but reproducible behaviours in the three sites. All samples from both facies show a secondary viscous component easily removable in the first steps of the magnetic cleaning (< 10–15 mT or < 150–200°C; Figs. 3 and 4), being particularly significant in the carbonaceous. The ashes mostly display a well-defined and stable normal polarity magnetic component which decays univectorially towards the origin, being of high intensity and almost demagnetised at 80–100 mT (Fig. 3A–C). Ashes thermally demagnetised define their characteristic remanent magnetisation (ChRM) between 250°C and 580–600°C (Fig. 3D–E). The carbonaceous samples AF demagnetised show in most cases a single normal polarity magnetic component (Fig. 4D and F). Occasionally, however, several components partially overlapping can be distinguished (Fig. 4A and B). By thermal demagnetisation it is revealed the presence of partial thermo-remanences (p-TRM) in this facies with maximum unblocking temperatures (Tub) in the range of 350–450°C (Fig. 4C, E and G). This component was considered as the ChRM direction defined between 200 and 350–450°C. In these samples, a high-temperature (400–600°C) component is observed as insets of Fig. 4E and G illustrate. It is interesting to note that mean directions both of ashes and carbonaceous samples calculated separately in each burning event are coincident. This reinforces the idea that both facies
Fig. 3. Representative orthogonal NRM demagnetisation plots for six ashes from the three sites. Open (closed) symbols represent the vertical (horizontal) projections of vector endpoints. The sample code, intensity (NRM₀), Koenigsberger (Qₙ) ratio and demagnetisation spectra are indicated for each sample. (A-C) AF = alternating field; (D-F) TH = thermal. Diagrams from both techniques correspond to the same burning event.

In contrast to the good palaeomagnetic properties of most investigated structures, some showed anomalous behaviour which is related to mechanical alterations. As we initially did not know the magnetic behaviour of these burning events, our field-work strategy comprised the sampling of every burnt structure or that at least might show signs of having been heated regardless of its thickness and degree of preservation. Thus, there is a clear correlation between the quality of the archaeomagnetic data obtained and a good preservation of the structure. In those burning features showing anomalous behaviour (e.g. multicomponent NRM demagnetisation diagrams in ashes with anomalous or highly scattered directions), we have found to converge a number of evidences common to the three sites indicative of sediment reworking. These are ashes mixed with unburnt sediment, occasional absence or discontinuities in the carbonaceous facies, a small thickness in the ashes and Koenigsberger (Qₙ) values \(< 1 \). All these features are indicative of disturbance by mechanical removal of the ashes (e.g. bioturbation) as Carrancho et al. (2012) observed in a previous study at El Mirador Cave. The subsequent movement of the ferromagnetic (s.l.) particles reduces the remanence maintaining the susceptibility therefore generating low values of the Qₙ ratio and multicomponent NRM diagrams. Likewise, the partial or total absence of the subjacent carbonaceous substrate as well as irregular geometries in the facies comprising these burning events are also indicative of mechanical alteration.

We therefore established a set of criteria as a "quality control" in order to identify anomalous behaviours and determine the reliability of these structures to obtain archaeomagnetic directions. These are: (i) Presence of all the sedimentary facies for each burning event (ashes over underlying carbonaceous facies); (ii) Koenigsberger (Qₙ) ratio values > than unity indicating a stable thermoremanence (TRM) or a partial TRM; (iii) absence of any indication of mechanical alteration in the sediments (e.g. mixed or truncated facies), and (iv) a majority of demagnetisation diagrams with univectorial NRM among the ashes. After applying the selection criteria 13 burning events (6 from El Mirador and 7 from El Mirón not shown in Table 1) were rejected. 347 samples passed the quality control, from which 26 new archaeomagnetic directions corresponding to 26 burning events were obtained (Table 1 and Fig. 5).

3.2. Magnetic properties

The magnetic properties results reported here are referred to representative ash and carbonaceous samples from all sites. Magnetic properties of four Neolithic burning events from "El Mirador..."
3.2.1. IRM acquisition curves and hysteresis cycles

Isothermal remanent magnetisation (IRM) progressive acquisition curves (1 T) are almost saturated around ~150-200 mT, which indicates remanence is carried by low-coercivity ferromagnetic minerals (Fig. 6A, C and E). Hysteresis loops of ashes and carbonaceous samples (expressed on a mass-specific basis and corrected by the paramagnetic fraction), are practically closed around ±150 mT (Fig. 6B, D and F) again indicating the dominant presence of low-coercivity minerals. All samples exhibit pseudo-single domain (PSD) hysteresis parameters according to Day et al. (1977). The main difference between both facies is the intensity of magnetisation: notably higher in ashes than carbonaceous samples. Occasionally, however, similar intensity values between both facies can also be observed (e.g., Fig. 6E and F). This characteristic behaviour is reproducible in all studied samples from the three sites.

Fig. 4. Representative orthogonal NRM demagnetisation plots for seven carbonaceous samples from the three sites. Symbols are as in Fig. 3. The final steps of the diagrams shown in panels (E) and (G) are blown up to denote the presence of a high-temperature component between 400 and 600 °C.
Fig. 5. Equal-area projections of all ChRM directions together with the mean direction and θ_{55} for each of the studied burning events accepted. Mean direction of burning episode N18-MSE15 (El Mirador) has also been calculated with remagnetisation circles.

3.2.2. Three-axial thermal demagnetisation of IRM

The soft magnetic component (< 0.12 T) shows maximum unblocking temperatures (T_{ub}) of $\sim 575-625$ °C, indicating the presence of magnetite and/or magnetite partially maghaemitised (Supplementary Fig. 8). We cannot exclude the presence of stable maghaemite with respect to the inversion to haematite (Ozdemir and Banerjee, 1984), because there is still remanence over 600°C. The low-coercivity component is dominant in all samples, compared with the magnetisation of the intermediate (0.12–0.4 T) and hard (0.4–2 T) components.
3.2.3. Thermomagnetic curves

Magnetisation variations at temperatures up to 700 °C (J–T curves) in representative ash and carbonaceous samples, show that the main magnetic carrier is magnetite or slightly substituted magnetite, with Curie temperatures \((T_c) \) around 580 °C (Fig. 7A–B and E–I). Occasionally, some ashes show slightly higher Curie temperatures (e.g. Fig. 7C and D), which are interpreted as magnetite partially maghaemitised. The inflexion at intermediate Curie temperatures of \(\sim 250–300 \) °C observed in the heating and cooling cycles of some ashes (e.g. Fig. 7E and F) are probably related with stable maghaemite or less likely, a strongly isomorphous substituted spinel phase. We have not observed apparent relation between the colour of ashes and their thermomagnetic behaviour. The ashes display a high degree of reversibility, which indicates that they underwent high-temperature heating. Carbonaceous samples, however, increase considerably the magnetisation on cooling from 580 °C, indicating the creation of secondary magnetite (e.g. Fig. 7G–I). The intensity of magnetisation among samples is variable but the highest values are found in ashes because concentration of ferromagnetic minerals is higher than in the carbonaceous ones. Both ashes and carbonaceous samples show a distinctive but reproducible behaviour.
4. Discussion

4.1. Origin of the NRM in fauniers

In summary, the burnt facies studied at the three sites are all dominated by pseudo-single domain (PSD) low-coercivity ferromagnetic minerals (magnetite, slightly substituted magnetite and/or maghaemite). Although magnetite — with a small amount of isomorphous substitution — is dominant, some results suggest the occasional presence of maghaemite. It has been particularly detected in some thermomagnetic curves (e.g., Fig. 7D) as well as in the thermal demagnetisation diagrams of the NRM with maximum T_{ub} slightly over 600°C (e.g., Fig. 3D). Our interpretation about the mechanism of magnetisation implies that these burning events where magnetite was created by burning at high temperatures, recorded the geomagnetic field through the acquisition of a thermoremanence (TRM). This magnetite was created by burning under reducing conditions with presence of organic matter. The reversibility of the thermomagnetic curves also supports a TRM origin of the magnetisation, but a thermochemical remanent magnetisation (TCRM) cannot be excluded given that stable maghaemite has also occasionally been observed. In such a case palaeointensity determinations would not be valid, although directional data would be valid because the burning and oxidation are closely confined in time (Carrancho et al., 2009). The high degree of reversibility of thermomagnetic curves suggests that ashes underwent high heating temperatures (> 700°C). In contrast, the maximum unblocking temperatures (T_{ub}) of the p-TRMs identified in the carbonaceous samples reveal that this facies underwent lower heating temperatures ranging between 350 and 450°C (Fig. 4G, E). The irreversibility of their thermomagnetic curves is also an indication of it (Fig. 7G-I). These observations are not only interesting from the archaeomagnetic point of view but also from the archaeological perspective. Overall, these results agree well with those obtained at the Neolithic levels of El Mirador Cave (Carrancho et al., 2009). A considerable number of specimens had to be rejected because they were affected by mechanical disturbance processes. Therefore it is important to apply the selection criteria proposed here when studying anthropogenic cave sediments for archaeomagnetic analysis.

Fig. 7. Representative examples of thermomagnetic curves (f vs. T) of (A–F) ashes and (G–I) carbonaceous samples from the three sites. Heating (cooling) cycles are plotted in black (grey) with their respective arrows. Sample code, site, archaeological unit, ash colour and intensity of magnetisation are indicated. Note that carbonaceous samples shown in panels (G)–(I) correspond to the same burning event as the ashes shown in figures (A)–(C).
4.2. First Neolithic directional results from Western Europe

The archaeomagnetic data reported here represent the oldest directional results from burnt archaeological materials throughout all Western Europe. From the 39 sampled structures at the three sites it has been reported 26 well-defined archaeomagnetic directions: 15 directions were obtained from El Mirador, 8 from El Mirón and 3 from El Portalón (Fig. 5). Mean directions, statistical parameters and their associated age intervals are compiled in Table 1. Mean directions have been calculated with a minimum of 7 samples, the dispersion parameter \(k \) is reasonably acceptable and in 24 out of 26 data the \(\alpha_{95} \) is comprised between 3 and 6.9° (Table 1). Data from 13 structures (6 from El Mirador and 7 from El Mirón Cave) were rejected because they did not pass the quality criteria described in Section 3.1. Burning events FU1 (Mir12) and FU4 (Mir21) from the West section of El Mirador Cave (Table 1), have the most aberrant directions showing significant directional deviation in comparison with coetaneous burning events from the East Section. However, no apparent tectonic deformation was observed in the field and they fulfil the quality selection criteria established in Section 3.1, so they were not excluded. Although some scatter is observed in the data (Fig. 8A), higher than in common archaeological heated structures (as ceramic kilns), coherence in directional results among sites is also evidenced.

4.3. Comparison with global and regional models

The new archaeomagnetic data reported here have been compared with the two secular variation models available for these ages: the CALS10K.1b global model (Korte et al., 2011) and the European regional model SCHA.DIF.8K (Pavón-Carrasco et al., 2010). The first one covers the last 10 millennia \((8000 \text{ BC} - 1990 \text{ AD}) \) compiling directional and intensity data from archaeomagnetic materials, lava flows and lacustrine sediments studied worldwide. The second model (SCHA.DIF.8K) includes archaeomagnetic and sedimentary data for the last 8 millennia exclusively from Europe. Due to the scarcity of archaeomagnetic data both models include materials of different origin whose magnetisations are acquired through different mechanisms. That is, both models include sedimentary records that produce the already mentioned “smoothing effect” which should be taken into account when comparing with burnt archaeological material, carrying a TRM acquired in a brief time interval.

The directions reported here – mostly concentrated between \(\sim 5500 \) and 4000 yr cal. BC – follow the general trend predicted
by the models but displaying higher variability (Fig. 8A). In particular, the data comprised between ~4200 and 4600 BC, show a clear tendency towards lower inclinations than the synthetic curves. The smoothing effect of the models does not allow a precise comparison with the archaeomagnetic data obtained in the anthropogenic cave sequences. This effect is particularly noticeable in Western Europe where only lacustrine data were available for these ages. Low inclinations are also observed for the same time interval in the archaeomagnetic Bulgarian database (Kovacheva et al., 2008) (Fig. 8B). The lower variability in inclination predicted by the models is then attributed to the smoothing effect produced by using sedentary records in the models construction as input data. We do not consider that the low inclination values are due to compaction effects, since the observed variations in inclination are inhomogeneous through time. Moreover, the oldest and stratigraphically deeper data in the studied sequences that theoretically endured higher lithostatic charges should have produced lower inclinations and this is not the case. In fact, the oldest data show inclination values substantially higher than those comprised between 4200 and 4600 yr cal. BC (Fig. 8A).

4.4. First European PSV curve for the Neolithic

In order to develop a European PSV based exclusively on archaeomagnetic data, the new data presented here and the Bulgarian archaeomagnetic database were relocated to a common intermediary location, i.e. 43° N/11° E, by using the virtual geomagnetic pole method (Noël and Batta, 1998). The consistency of this new European archaeomagnetic database allows us to propose the first European archaeomagnetic PSV (Fig. 8B). In order to obtain the best fitting between the data and the PSV a bootstrap method was applied (Korte and Constable, 2008; Thébault and Gallet, 2010) using the original values of the database and penalised cubic B-splines in time. The synthetic data for each bootstrap curve were randomly modified by two mathematical distributions: (a) for the directional values, we used a Gaussian random distribution centred in the mean value of the directional data with a standard deviation equal to the directional uncertainties (σθ); and (b) in time, a homogeneous random distribution was used, with minimum and maximum values given by temporal uncertainties at 1σ. The temporal bases of cubic B-splines were calculated with fixed knots every 50 years from 6000 BC to 1000 BC and regularised by an additional penalty function which controls the trade-off between the input data and roughness of the estimated directional curve. In this case, we have used the second derivative of the function as the penalty function as follows:

\[
\mathbf{f} = (\mathbf{B}' \cdot \mathbf{C}^{-1} \cdot \mathbf{B} + \lambda \cdot \mathbf{I})^{-1} \cdot \mathbf{B}' \cdot \mathbf{C}^{-1} \cdot \mathbf{y}
\]

where \(\mathbf{f} \) is the estimated function, i.e. the calculated palaeosecular variation curve, \(\mathbf{B} \) is the matrix containing the basis of cubic B-splines (\(\mathbf{B}' \) is the transpose of \(\mathbf{B} \)), \(\mathbf{C} \) is the data error covariance matrix and \(\mathbf{y} \) is the vector of input data (declination or inclination data). The matrix \(\mathbf{I} \) is the penalty function which depends on the second time derivative of the estimated function \(\mathbf{f} \) with damping parameter \(\lambda \). A total of 2000 individual declination and inclination curves were obtained following this procedure. The final directional PSV was generated using the mean value provided from the average of the 2000 curves and their standard deviations (Fig. 8B and Supplementary Table 1).

The master curve is well constrained between 6000 and 3800 BC (Fig. 8B). Inclination values of about 65° are observed for the oldest data, followed by a progressive decrease, reaching a minimum (~45°) around 4200 BC. Declination values vary from ~20° to 20° between 6000 and 5000 BC, migrating westward up to values of ~10° around 4000 BC. There is a gap of data between 3400 and 3800 BC. The curve is again well-defined between 3300 and 2300 BC, followed by a period of lower data density that is poorly represented.

Fig. 8C illustrates the comparison of the new master curve and the curves predicted by the models (Korte et al., 2011; Pavón-Carrasco et al., 2010). The new curve is contained within the error margin of the synthetic curves provided by the models but it is better defined (lower errors) and indicates a higher frequency in the directional variation of the geomagnetic field for the 6000–2000 BC time period than previously suspected. These variations are similar to those observed for the last 3000 yr, the period with the highest density of archaeomagnetic data.

The new master curves can be used as a tool for archaeomagnetic dating from 6000 to 1000 BC. To that aim, it has been included into the PSV database of the archaeo-dating tool software (Pavón-Carrasco et al., 2011) and it is available at http://earthref.org/ERDAj134/. The resolution of an archaeomagnetic date using the master curve depends on time due to the scattering of the data and the directional behaviour of the geomagnetic field itself. To quantify this variation on the resolution, we have dated synthetic mean values of the master curve from 6000 to 1000 BC, using the own master curve and the archaeo dating software. The dating resolution of the curve (6000–1000 yr BC) is typically below ±200 yr and for certain parts of the curve it may reach ±30 yr (e.g., around 5500 BC) showing a clear correlation with the error of the master curve (Fig. 8). As expected, the maximum resolution is reached in those time intervals with the lowest errors and, in contrast, those intervals less well-defined have less dating resolution. The main implication from the archaeological point of view is that this dating approach may reach similar precision as radiocarbon, although it is clear that still needs to cover some gaps (e.g., 3800–3200 BC).

This contribution will benefit diverse disciplines in Earth's Sciences from geophysics (e.g., providing new data to model the geometry of geomagnetic field) to Archaeology (extending back in time the archaemagnetism as a dating method) or even palaeoclimatology, since geomagnetic field models are necessary to correct production of cosmogenic isotopes. As long as more archaeomagnetic data will be compiled the resolution and chronological extension of this new curve will be certainly improved.

5. Conclusions

The archaeomagnetic and rock-magnetic study of anthropogenic cave sediments from three caves in Spain lead us to the following conclusions:

1. 26 new archaeomagnetic directions ranging between ~5500 and 2000 yr BC have been obtained. These data represent the
oldest archaeomagnetic directions obtained from burnt archaeological materials throughout all Western Europe.

(2) The remanence of the burnt facies studied is carried by PSD low-coercivity ferromagnetic minerals (magnetite, maghemite with no significant isomorphous substitution and/or haematite). Rock-magnetic experiments indicate a TRM origin of the magnetisation although a TCRM cannot be excluded in those burning features where maghemite has been occasionally identified.

(3) Several quality selection criteria have been established in order to identify anomalous archaeomagnetic behaviours (related with mechanical syn/post-depositional processes) and determine the reliability of these structures to obtain archaeomagnetic directions.

(4) A first European archaeomagnetic PSV curve for the Neolithic is proposed using these new data and the recent updated archaeomagnetic Bulgarian database. This new curve defines the directional variations of the geomagnetic field with better resolution than sedimentary records. Its dating resolution oscillates from approximately ±30 yr to ±200 yr for the period 6000 to 1000 yr BP, having for the moment similar resolution as radiocarbon dating.

Finally, the wide distribution of anthropogenic cave sediments throughout the Mediterranean area will help to cover geographical gaps in the archaeomagnetic database. Furthermore, being part of continuous, in situ, generally well-dated stratigraphic sequences is possible to obtain a largely continuous set of data from the same site. More importantly, they are particularly interesting because they span older ages than other materials traditionally used in archaeomagnetism. Although still few to define a secular variation pattern in detail, this study opens new promising perspectives to extend temporally regional secular variation records and to extend back in time the archaeomagnetic dating tool.

Acknowledgements

This work was supported by the Dirección General de Investigación Científica y Técnica, Spanish Ministry of Science (projects CGL2009-10840, CGL2012-32149, CGL2012-38481, CGL2011-24790 and CGL2009-12703-C03); Á.C. research was funded by the International Excellence Campus Programme, Reinforcement subprogramme, of the Spanish Ministry of Education. Special gratitude is devoted to the archaeologists implicated in the excavations at the studied sites and to Mary Kovacheva for her continuous work updating the Bulgarian archaeological database.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.epsl.2013.08.031.

References

