Universidad Complutense de Madrid
E-Prints Complutense

The likelihood of multivariate GARCH models is ill-conditioned

Impacto

Descargas

Último año



Jerez Méndez, Miguel y Casal, José y Sotoca López, Sonia (1999) The likelihood of multivariate GARCH models is ill-conditioned. [ Documentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE); nº 04, 1999, ]

[img]
Vista previa
PDF
Creative Commons License
Esta obra está bajo una licencia de Creative Commons: Reconocimiento - No comercial - Compartir igual.

611kB

URL Oficial: http://eprints.ucm.es/29023/


URLTipo de URL
http://www.ucm.es/icaeSIN ESPECIFICAR


Resumen

The likelihood of multivariate GARCH models is ill-conditioned because of two facts. First, financial time series often display high correlations, implying that an eigenvalue af the conditional covariances fluctuates near the zero boundary. Second, GARCH models explain conditional covariances in terms of a linear combination of delayed squared errors and their conditional expectation; this functional form implies that the likelihood function is almost flat in the neighborhood of the optimal estimates. Building on this analysis we propose a linear transformation of data which, not only stabilizes the likelihood computation, but also provides insight about the statistical properties of data. The use of this transfonnation is illustrated by modeling the short-run conditional correlations of four nominal exchange rates.

Resumen (otros idiomas)

La verosimilitud de procesos GARCH multivariantes está mal condicionada por dos causas. En primer lugar, las series financieras a menudo están fuertemente correladas, lo cual implica que un autovalor de las matrices de covarianzas condicionales está próximo a cero. En segundo lugar, los modelos GARCH explican la varianza condicional en términos de errores cuadráticos retardados y de la esperanza condicional de éstos; esta forma funcional implica que la función de verosimilitud es prácticamente plana en el entorno de las estimaciones óptimas. A partir de este análisis, proponemos una transformación lineal de los datos que, no sólo estabiliza el cálculo de la verosimilitud, sino que ayuda a analizar las propiedades estadísticas de los datos. El uso de esta transformación se ilustra modelizando las correlaciones condicionales a corto plazo de cuatro tipos de cambio nominales.

Tipo de documento:Documento de trabajo o Informe técnico
Palabras clave:ARCH; GARCH; Maximum-likelihood.
Materias:Ciencias > Estadística > Análisis Multivariante
Título de serie o colección:Documentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
Volumen:1999
Número:04
Código ID:29023
Depositado:05 Mar 2015 15:42
Última Modificación:05 Mar 2015 15:42

Descargas en el último año

Sólo personal del repositorio: página de control del artículo