Comparing two treatments in terms of the likelihood ratio order

Martin, N.1, Mata, R.2 and Pardo, L.2

1Department of Statistics, Carlos III University of Madrid, 28903 Getafe (Madrid), Spain
2Department of Statistics and O.R., Complutense University of Madrid, 28040 Madrid, Spain

October 30, 2014

Abstract

In this paper new families of test statistics are introduced and studied for the problem of comparing two treatments in terms of the likelihood ratio order. The considered families are based on phi-divergence measures and arise as natural extensions of the classical likelihood ratio test and Pearson test statistics. It is proven that their asymptotic distribution is a common chi-bar random variable. An illustrative example is presented and the performance of these statistics is analysed through a simulation study. Through a simulation study it is shown that, for most of the proposed scenarios adjusted to be small or moderate, some members of this new family of test-statistic display clearly better performance with respect to the power in comparison to the classical likelihood ratio and the Pearson's chi-square test while the exact size remains closed to the nominal size. In view of the exact powers and significance levels, the study also shows that the Wilcoxon test-statistic is not as good as the two classical test-statistics.

Keywords and phrases: Divergence measure, Kullback divergence measure, Inequality constrains, Likelihood ratio order, Loglinear models.

1 Introduction

In order to motivate the problem dealt in this paper, we have considered the results of an experiment carried out by Doll and Pygott (1952) to assess the factors influencing the rate of healing of gastric ulcers. Two treatments groups were compared. Patients in group 2 were treated in bed in hospital for four weeks. For the first two weeks they were given a moderate strict orthodox diet and for the last two weeks a more liberal one. They were then reexamined radiographically, discharged, recommended to continue on a convalescent diet and advised return to work as soon as they felt fit enough. Patients in group 1 were discharged immediately. They were treated from the outset in the way that group 2 patients were treated after their month’s stay in hospital. In Table 1, we present the results showed by Doll and Pygott (1952, Table IV) for three months after starting the treatments.

This article proposes new families of test-statistics when we are interested in studying the possibility that the ulcer treatment (Treatment 2) is better than the control (Treatment 1).

<table>
<thead>
<tr>
<th>Larger $< \frac{1}{3}$</th>
<th>Healed $\geq \frac{4}{9}$</th>
<th>Healed</th>
<th>Healed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1</td>
<td>11</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>6</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1: Change in size of ulcer crater.
Let Y denote the ordinal response variable and X denote an ordinal explanatory variable with two categories. The variable Y takes the values 1, 2, 3 and 4, which represent different levels of healing, from less to much capacity to heal the ulcer. The variable X takes the values 1 and 2 according as the treatment group, 1 is control and 2 is the treatment group by itself. We shall initially focus on making statistical inference on the theoretical probabilities displayed in Table 2

<table>
<thead>
<tr>
<th>Larger</th>
<th>$< \frac{1}{4}$ Healed</th>
<th>$\geq \frac{1}{4}$ Healed</th>
<th>Healed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1</td>
<td>Pr($Y = 1</td>
<td>X = 1$) Pr($Y = 2</td>
<td>X = 1$) Pr($Y = 3</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>Pr($Y = 1</td>
<td>X = 2$) Pr($Y = 2</td>
<td>X = 2$) Pr($Y = 3</td>
</tr>
</tbody>
</table>

Table 2: Theoretical conditional probabilities.

There are several ways of formulating the statement “the treatment is better than the control”. Initially, we shall consider that Treatment 2 is at least as good as Treatment 1 if the ratio $\frac{Pr(Y = j | X = 2)}{Pr(Y = j | X = 1)}$ increases as the response category, j, increases, i.e.

$$\frac{Pr(Y = j | X = 2)}{Pr(Y = j | X = 1)} \leq \frac{Pr(Y = j+1 | X = 2)}{Pr(Y = j+1 | X = 1)}$$

for every j, (1)

and Treatment 2 is better than the Treatment 1 if (1) holds with at least one strict inequality.

If we assume that Treatment 2 is at least as good as Treatment 1, i.e., (1) holds, is there any evidence to support the claim that treatment 2 is better? In such a case null and alternative hypotheses may be

$$H_0 : \frac{Pr(Y = j | X = 2)}{Pr(Y = j | X = 1)} = \frac{Pr(Y = j+1 | X = 2)}{Pr(Y = j+1 | X = 1)}$$

for every j, (2a)

and

$$H_1 : \frac{Pr(Y = j | X = 2)}{Pr(Y = j | X = 1)} \leq \frac{Pr(Y = j+1 | X = 2)}{Pr(Y = j+1 | X = 1)}$$

for at least one j. (2b)

The null hypothesis means that both treatments are equally effective, while the alternative hypothesis means that Treatment 2 is more effective than Treatment 1. Note that if we multiply on the left and right hand side of (2a) and (2b) by $\left(\frac{Pr(Y = j | X = 2)}{Pr(Y = j | X = 1)}\right)^{-1}$ we obtain

$$H_0 : \vartheta_j = 1 \text{ for every } j \in \{1, ..., J - 1\},$$

$$H_1 : \vartheta_j \geq 1 \text{ for every } j \in \{1, ..., J - 1\} \text{ and } \vartheta_j > 1 \text{ for at least one } j \in \{1, ..., J - 1\},$$

(3a) (3b)

where J is the number of ordered categories for response variable Y,

$$\vartheta_j = \frac{\pi_{1j}\pi_{2,j+1}}{\pi_{2j}\pi_{1,j+1}}, \quad \forall j \in \{1, ..., J - 1\},$$

(4)

are “local odds ratios” associated with response category j, and

$$\pi_{ij} = Pr(Y = j | X = i).$$

(5)

In case of considering the opposite inequalities given in (2b) or (3b), the easiest way to carry out the test is to exchange the observation of the two rows in the contingency table (in the example, Treatment 2 in the first row and Treatment 1 in the second row). In this way, the mathematical background is not changed but the interpretation of the aim is changed. In the example however, there is no sense in considering that the control (1) is better than the treatment (2), if the experiment is carried out with humans and it is assumed that the treatment will not harm these patients.

The non-parametric statistical inference associated with the likelihood ratio ordering for two multinomial samples was introduced for the first time in Dykstra et al. (1995) using the likelihood ratio test-statistic.
In the literature related to different types of orderings, in general there is not very clear what is the most
appropriate ordering to compare two treatments according to a categorized ordinal variable. In the case of
having two independent multinomial samples, the likelihood ratio ordering is the most restricted ordering type;
for example, if the likelihood ratio ordering holds, then the simple stochastic ordering also holds. Dardanoni
and Forcina (1998) proposed a new method for making statistical inference associated with different types
of orderings. For unifying and comparing different types of orderings, they reparametrize the initial model.
Different ordering types can be considered to be nested models and the likelihood ratio ordering is the most
parsimonious one. The advantage of nested models is that the most restricted models tend to be more powerful
for the alternatives that belong to the most restricted alternatives. In this setting, our proposal in this paper is
to introduce new test-statistics that provide substantially better power for testing (2a) against (2b).

The structure of the paper is as follows. In Section 2, we have considered the likelihood ratio order associated
with a non-parametric model, as in Dardanoni and Forcina (1998), but the specification of the model through
a saturated loglinear model is substantially different. Section 3 presents the phi-divergence test-statistics as
extension of the likelihood ratio and chi-square test-statistics. The applied methodology in Section 4 for proving
the asymptotic distribution of the phi-divergence test-statistics, based on loglinear modeling, has been developed
by following a completely new and meaningful method even for the likelihood ratio test. A numerical example
is given in Section 5. The aim of Section 6 is to study through simulation the behaviour of the phi-divergence
test-statistics for small and moderate simple sizes. Finally, we present an Appendix in which we establish the
part of the proofs of the results not shown in Section 4.

2 Loglinear modeling

We display the whole distribution of π_{ij}, given in (3), in a rectangular table having 2 rows for the categories
of X and J columns for the categories of Y (for the initial example, Table 2) and we denote the $2 \times J$ matrix
$\Pi = (\pi_1, \pi_2)^T$, with two rows of probability vectors, $\pi_i = (\pi_{i1}, ..., \pi_{ij})^T, i = 1, 2$. We consider two independent
random samples $N_i = (N_{i1}, ..., N_{ij})^T \sim M(n_i, \pi_i)$, $i = 1, 2$, where sizes n_i are prefixed and $\pi_i > 0$, that is
the probability distribution of r.v. $N = (N_1^T, N_2^T)^T$ is product-multinomial. Let

$$p_{ij} = \Pr(X = i, Y = j),$$

be the joint probability distribution. Since $\Pr(X = i, Y = j) = \Pr(Y = j|X = i) \Pr(X = i)$, i.e. $p_{ij} = \pi_{ij} n_i / n$,
i = 1, 2, where $n = n_1 + n_2$, we can express (4) also in terms of the joint probabilities

$$\vartheta_j = \frac{p_{1j} p_{2,j+1}}{p_{2j} p_{1,j+1}}, \quad \forall j \in \{1, ..., J - 1\}.$$

(7)

Let $P = (p_1, p_2)^T$, with $p_i = (p_{i1}, ..., p_{ij})^T, i = 1, 2$, be the $2 \times J$ probability matrix and

$$p = \text{vec}(P^T) = (p_1^T, p_2^T)^T$$

(8)
a probability vector obtained by stacking the columns of P^T (i.e., the rows of matrix P). Note that the components
of P are ordered in lexicographical order in p. The likelihood function of N is $\mathcal{L}(N; p) = k \prod_{j=1}^J N_{1j}^{N_{1j}} N_{2j}^{N_{2j}}$, where k is a constant which does not depend on p and the kernel of the loglikelihood function

$$\ell(N; p) = \sum_{j=1}^J (N_{1j} \log p_{1j} + N_{2j} \log p_{2j}).$$

(9)

In matrix notation, we are interested in testing

$$H_0 : \vartheta = 1_{J-1} \text{ versus } H_1 : \vartheta \gtrsim 1_{J-1},$$

(10)
where \(\mathbf{1}_a \) is the \(a \)-vector of 1-s, \(\varrho = (\varrho_1, ..., \varrho_{J-1})^T \). Note that (10) involves \(J - 1 \) non-linear constraints on \(\mathbf{p} \), defined by (8). In this article the hypothesis testing problem is formulated making a reparametrization of \(\mathbf{p} \) using the saturated loglinear model, so that some linear restrictions are considered with respect to the new parameters. This fact is important and interesting.

Focussed on \(\mathbf{p} \), the saturated loglinear model with canonical parametrization is defined by

\[
\log p_{ij} = u + u_{1(i)} + \theta_{2(j)} + \theta_{12(ij)},
\]

with the identifiability restrictions

\[
u_{1(2)} = 0, \quad \theta_{2(J)} = 0, \quad \theta_{12(1J)} = 0, \quad \theta_{12(2j)} = 0, \quad j = 1, ..., J.
\]

It is important to clarify that we have used the identifiability constraints (12) in order to make easier the calculations and this model formulation for making statistical inference with inequality restrictions with local odds-ratios has been given in this paper for the first time. Similar conditions have been used for instance in Lang (1996, examples of Section 7) and Silvapulle and Sen (2005, exercise 6.25 in page 345). Let \(\theta_{12} = (\theta_{12(11)}, ..., \theta_{12(1,J-1)})^T \), \(\theta_{2} = (\theta_{2(1)}, ..., \theta_{2(J-1)})^T \) denote subvectors of the unknown parameters \(\theta = (\theta_{12}^T, \theta_{2}^T)^T \). The components of \(\mathbf{u} = (u, u_{1(1)})^T \) are redundant parameters since the term \(u \) can be expressed in function of \(\theta \) using the fact that \(\sum_{j=1}^{J} p_{2j} = \frac{\nu_2}{n} \), i.e.

\[
u = u(\theta) = \log n_2 - \log n - \log \left(1 + \sum_{j=1}^{J-1} \exp \{\theta_{2(j)}\} \right),
\]

and \(u_{1(1)} \) taking into account that \(\sum_{j=1}^{J} p_{1j} = \frac{\nu_1}{n} \), i.e.

\[
u_{1(1)} = u_{1(1)}(\theta) = \log \frac{n_1}{n_2} + \log \frac{1 + \sum_{j=1}^{J-1} \exp \{\theta_{2(j)}\} - \sum_{j=1}^{J-1} \exp \{\theta_{2(j)} + \theta_{12(1j)}\}}{1 + \sum_{j=1}^{J-1} \exp \{\theta_{2(j)} + \theta_{12(1j)}\}}.
\]

In matrix notation (11) is given by

\[
\log \mathbf{p}(\theta) = \mathbf{W}_0 \mathbf{u} + \mathbf{W} \theta,
\]

where \(\mathbf{p}(\theta) \) is \(\mathbf{p} \) such that the components are defined by (11),

\[
\mathbf{W}_0 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_J,
\]

is a \(2J \times 2 \) matrix with \(\mathbf{1}_a \) being the \(a \)-vector of ones, \(\mathbf{0}_a \) the \(a \)-vector of zeros, \(\otimes \) the Kronecker product; \(\mathbf{W} \) the full rank design matrix of size \(2J \times 2(J-1) \), such that

\[
\mathbf{W} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} \mathbf{I}_{J-1} \\ \mathbf{0}_{J-1} \end{pmatrix},
\]

with \(\mathbf{I}_a \) being the identity matrix of order \(a \), \(\mathbf{0}_{a \times b} \) the matrix of size \(a \times b \) with zeros. The condition (1) can be expressed by the linear constraint

\[
\theta_{12(1j)} - \theta_{12(2j)} - \theta_{12(1,j+1)} + \theta_{12(2,j+1)} \geq 0, \quad \forall j \in \{1, ..., J - 1\},
\]

since \(\log \varrho_j = \log p_{1j} - \log p_{2j} - \log p_{1,j+1} + \log p_{2,j+1} = \theta_{12(1j)} - \theta_{12(2j)} - \theta_{12(1,j+1)} + \theta_{12(2,j+1)} \).
Condition (17) in matrix notation is given by \(R\theta \geq 0_{J-1} \), with \(R = e_2^T \otimes G_{J-1} = (0_{(J-1)\times(J-1)}, G_{J-1}) \), \(e_a \) is the \(a \)-th unit vector and \(G_h \) is a \(h \times h \) matrix with 1-s in the main diagonal and \(-1\)-s in the upper superdiagonal. Observe that the restrictions can be expressed also as \(G_{J-1}\theta_{12} \geq 0_{J-1} \), and \(\theta_{1(1)} \) are \(\theta_2 \) are nuisance parameters because they do not take part actively in the restrictions.

The kernel of the likelihood function with the new parametrization is obtained replacing \(p \) by \(p(\theta) \) in (9), i.e.

\[
\ell(N; \theta) = N^T \log p(\theta) = N^T (W_0 u + W \theta) = nu(\theta) + n_1 u_{1(1)}(\theta) + N^T W \theta.
\]

Hypotheses (10) can be now formulated as

\[
H_0 : R\theta = 0_{J-1} \text{ versus } H_1 : R\theta \geq 0_{J-1} \text{ and } R\theta \neq 0_{J-1}.
\]

Under \(H_0 \), the parameter space is \(\Theta_0 = \{ \theta \in \mathbb{R}^{2(J-1)} : R\theta = 0_{J-1} \} \) and the maximum likelihood estimator (MLE) of \(\theta \) in \(\Theta_0 \) is \(\hat{\theta} = \arg\max_{\theta \in \Theta_0} \ell(N; \theta) \). The overall parameter space is \(\Theta = \{ \theta \in \mathbb{R}^{2(J-1)} : R\theta \geq 0_{J-1} \} \) and the MLE of \(\theta \) in \(\Theta \) is \(\hat{\theta} = \arg\max_{\theta \in \Theta} \ell(N; \theta) \). It is worthwhile to mention that the probability vectors for both parametric spaces, \(\hat{p}(\hat{\theta}) \) and \(p(\hat{\theta}) \) can be obtained by following the invariance property of the MLEs first estimating \(\theta \) and later plugging it into \(p(\theta) \), however \(p(\hat{\theta}) \) has an explicit expression,

\[
p_{ij}(\hat{\theta}) = \frac{n_i(N_{ij} + N_{j1})}{n^2},
\]

where \(n_i = \sum_{j=1}^J N_{ij} \) (see Christensen (1997), Section 2.3, for more details).

3 Phi-divergence test-statistics

The likelihood ratio statistic for testing (10), equivalent to one given by Dykstra et al. (1995) but adapted for loglinear modeling, is

\[
G^2 = 2(\ell(N; \hat{\theta}) - \ell(N; \hat{\theta})) = 2n \sum_{i=1}^J \sum_{j=1}^J p_{ij}(\hat{\theta}) \log \frac{p_{ij}(\hat{\theta})}{p_{ij}(\theta)},
\]

where \(p_{ij} = N_{ij}/n \), \(i = 1, 2, j = 1, ..., J \). Taking into account the identifiability constraints (12) and \(\hat{u} = u(\hat{\theta}) \), \(\hat{u}_{1(1)} = u_{1(1)}(\hat{\theta}), \hat{u}_{1(1)} = u_{1(1)}(\hat{\theta}) \) (see formulas (13)-(14)), (20) can also be expressed as

\[
G^2 = 2n(\hat{u} - \hat{u}) + 2n_1(\hat{u}_{1(1)} - \hat{u}_{1(1)}) + 2N^T W(\hat{\theta} - \bar{\theta}).
\]

The chi-square statistic for testing (10) is

\[
X^2 = n \sum_{i=1}^J \sum_{j=1}^J \frac{(p_{ij}(\hat{\theta}) - p_{ij}(\hat{\theta}))^2}{p_{ij}(\hat{\theta})}. \tag{21}
\]

The Kullback-Leibler divergence measure between two \(2J \)-dimensional probability vectors \(p \) and \(q \) is defined as

\[
d_{\text{Kull}}(p, q) = \sum_{i=1}^2 \sum_{j=1}^J p_{ij} \log \frac{p_{ij}}{q_{ij}}
\]

and the Pearson divergence measure

\[
d_{\text{Pearson}}(p, q) = \frac{1}{2} \sum_{i=1}^2 \sum_{j=1}^J \frac{(p_{ij} - q_{ij})^2}{q_{ij}}.
\]
It is not difficult to check that
\[
G^2 = 2n(d_{Kull}([\bar{p}, p(\hat{\theta})]) - d_{Kull}([\bar{p}, p(\bar{\theta})]))
\]
and
\[
X^2 = 2nd_{Pearson}(p(\hat{\theta}), p(\bar{\theta}))
\]
being \(p = N/n = (\bar{p}_{11}, \ldots, \bar{p}_{1J}, \bar{p}_{21}, \ldots, \bar{p}_{2J})^T \) the vector of relative frequencies.

More general than the Kullback-Leibler divergence and Pearson divergence measures are \(\phi \)-divergence measures, defined as
\[
d_\phi(p, q) = \sum_{i=1}^{2} \sum_{j=1}^{J} q_{ij} \phi \left(\frac{p_{ij}}{q_{ij}} \right),
\]
where \(\phi : \mathbb{R}_+ \rightarrow \mathbb{R} \) is a convex function such that\(\phi(1) = \phi'(1) = 0, \phi''(1) > 0, 0\phi(\frac{u}{p}) = 0, 0\phi(\frac{p}{u}) = p \lim_{u \rightarrow \infty} \frac{\phi(u)}{u} \), for \(p \neq 0 \).

From a statistical point of view, the first asymptotic statistical results based on divergence measures in multinomial populations were obtained in Zografos et al. (1990). For more details about \(\phi \)-divergence measures see Pardo (2006) and Cressie and Pardo (2002).

Apart from the likelihood ratio statistic \([20] \) and the chi-square \([21] \) statistic, we shall consider two new families of test-statistics based on \(\phi \)-divergence measures. The first new family is obtained by replacing in \([22] \) the Kullback divergence measure by a \(\phi \)-divergence measure,
\[
T_\phi([\bar{p}, p(\hat{\theta})], p(\bar{\theta})) = \frac{2n}{\phi'(1)}(d_\phi([\bar{p}, p(\hat{\theta})]) - d_\phi([\bar{p}, p(\bar{\theta})])).
\]
The second new family is obtained by replacing in \([23] \) the Pearson divergence measure by a \(\phi \)-divergence measure,
\[
S_\phi(p(\hat{\theta}), p(\bar{\theta})) = \frac{2n}{\phi''(1)}d_\phi(p(\hat{\theta}), p(\bar{\theta})).
\]
If we consider \(\phi(x) = x \log x - x + 1 \) in \([24] \), we get \(G^2 \), and if we consider \(\phi(x) = \frac{1}{2}(x - 1)^2 \) in \([24] \), we get \(X^2 \).

Test-statistics based on \(\phi \)-divergence measures have been used in the framework of loglinear models for some authors, see Cressie and Pardo (2000, 2002, 2003), Martín and Pardo (2006, 2008b, 2011).

4 Asymptotic results

As starting point, we shall establish the observed Fisher information matrix associated with \(\theta \), \(I_{F}^{(n_1, n_2)}(\theta) \), for a loglinear model with product-multinomial sampling as
\[
I_{F}^{(n_1, n_2)}(\theta) = \frac{1}{n} W^T \left(\begin{array}{c} n_1(D_{\pi_1}(\theta) - \pi_1(\theta) \pi_1^T(\theta)) \\ 0_{J \times J} \end{array} \right) 2n_2(D_{\pi_2}(\theta) - \pi_2(\theta) \pi_2^T(\theta)) W, \tag{26}
\]
where \(D_a \) is the diagonal matrix of vector \(a \). To proof \([25] \), we take into account that the overall observed Fisher information matrix for product multinomial sampling is the weighted observed Fisher information matrix associated with each multinomial sample, \(I_{F,i}^{(n_1, n_2)}(\theta), i = 1, 2 \), i.e.
\[
I_{F,i}^{(n_1, n_2)}(\theta) = \frac{n_1}{n} I_{F,1}^{(n_1, n_2)}(\theta) + \frac{n_2}{n} I_{F,2}^{(n_1, n_2)}(\theta),
\]
\[
I_{F,i}^{(n_1, n_2)}(\theta) = W_i^T (D_{\pi_i}(\theta) - \pi_i(\theta) \pi_i^T(\theta)) W_i, \quad i = 1, 2,
\]
such that $W^T = (W_{11}^T, W_{21}^T)$, log $p_1(\theta) = u_1 + u_{1(1)} + W_1 \theta$ and log $p_2(\theta) = u_1 + W_2 \theta$.

When $\theta \in \Theta_0$, we shall denote θ_0 to be the true value of the unknown parameter under H_0, and in such a case it holds $\pi_1(\theta_0) = \pi_2(\theta_0) = \pi(\theta_0) = (\pi_1(\theta_0), ..., \pi_J(\theta_0))^T$, where $\pi_i(\theta_0)$ is defined as the probability vector with the terms given in (5) and related to the loglinear model through $p_i(\theta_0) = \frac{n}{n} \pi_i(\theta_0)$, $i = 1, 2$. Notice that $\pi_i(\theta_0)$ is fixed as $n_1, n_2 \to \infty$ and we shall assume that

$$\nu_i = \lim_{n_i \to \infty} \frac{n_i}{n} \text{ for } i = 1, 2,$$

is fixed but unknown, i.e. $\lim_{n_i \to \infty} p_i(\theta) = \nu_i \pi_i(\theta_0)$, $i = 1, 2$. We shall also denote

$$\pi^*(\theta_0) = (\pi_1(\theta_0), ..., \pi_J(\theta_0))^T, \quad i = 1, 2.$$

the $(J - 1)$-dimensional vector obtained removing from $\pi(\theta_0)$ the last element. Focussing on the parameter structure $\theta = (\theta_1, \theta_2, \theta_3)^T$, with $\theta_1 = (\theta_{12(1)}, ..., \theta_{12(J-1)})^T, \theta_2 = (\theta_{2(1)}, ..., \theta_{2(J-1)})^T$ and the specific structure of W, see [16], we shall establish asymptotically the specific shape of (26), a fundamental result for the posterior theorems.

Theorem 1 The asymptotic Fisher information matrix of θ, $I_F(\theta) = \lim_{n_1, n_2 \to \infty} I_F^{(n_1, n_2)}(\theta)$ when $\theta \in \Theta_0$ is given by

$$I_F(\theta_0) = \left(\begin{array}{cc} I_{1} & \nu_1 \left(D \pi_1(\theta_0) - \pi^*(\theta_0) \pi^T(\theta_0) \right) \\ \nu_1 \left(D \pi_1(\theta_0) - \pi^*(\theta_0) \pi^T(\theta_0) \right)^T & \nu_1 \left(D \pi^*(\theta_0) - \pi^*(\theta_0) \pi^T(\theta_0) \right) \end{array} \right).$$

Proof. Replacing θ by θ_0 and the explicit expression of W in the general expression of the finite sample size Fisher information matrix for two independent multinomial samples, [20], we obtain through the property of the Kronecker product given in (1.22) of Harville (2008, page 341) that

$$I_F^{(n_1, n_2)}(\theta_0) = \left(\begin{array}{cc} I_{n_1} & 0 \\ 0 & I_{n_2} \end{array} \right) \left(\begin{array}{cc} I_{J-1} & 0 \\ 0 & I_{J-1} \end{array} \right) \left(\begin{array}{cc} 0 & \nu_1 \left(D \pi_1(\theta_0) - \pi^*(\theta_0) \pi^T(\theta_0) \right) \\ \nu_1 \left(D \pi^*(\theta_0) - \pi^*(\theta_0) \pi^T(\theta_0) \right)^T & 0 \end{array} \right).$$

and then

$$I_F(\theta_0) = \left(\begin{array}{cc} I_{n_1} & 0 \\ 0 & I_{n_2} \end{array} \right) \left(\begin{array}{cc} I_{J-1} & 0 \\ 0 & I_{J-1} \end{array} \right) \left(\begin{array}{cc} 0 & \nu_1 \left(D \pi_1(\theta_0) - \pi^*(\theta_0) \pi^T(\theta_0) \right) \\ \nu_1 \left(D \pi^*(\theta_0) - \pi^*(\theta_0) \pi^T(\theta_0) \right)^T & 0 \end{array} \right).$$

The following theorem establishes that the asymptotic distribution of the families of test statistics [24] and [25] corresponds to a J-dimensional chi-bar squared random variable, a mixture of J chi-squared distributions. Let $E = \{1, ..., J - 1\}$ be the whole set of all row-indices of matrix R, $F(E)$ the family of all possible subsets of E, and $R(S)$ is a submatrix of R with row-indices belonging to $S \in F(E)$. We must not forget that $R = (0_{(J-1)\times(J-1)}, G_{J-1})$ and therefore $R(S) = (0_{\text{card}(S)\times(J-1)}, G_{J-1}(S))$.

We denote by $H(\theta)$ the following $(J - 1) \times (J - 1)$ tridiagonal matrix

$$H(\theta) = \frac{1}{\nu_1 \nu_2} \left(\begin{array}{cccc} \pi_1(\theta) + \pi_2(\theta) & -1 & \pi_2(\theta) + \pi_3(\theta) & -1 \\ \pi_2(\theta) + \pi_3(\theta) & \pi_1(\theta) + \pi_2(\theta) & -1 & \pi_3(\theta) + \pi_4(\theta) \\ -1 & \pi_3(\theta) + \pi_4(\theta) & \pi_2(\theta) + \pi_3(\theta) & -1 \\ \pi_3(\theta) + \pi_4(\theta) & -1 & \pi_2(\theta) + \pi_3(\theta) & \pi_1(\theta) + \pi_2(\theta) \\ \vdots & \vdots & \vdots & \vdots \\ -1 & \pi_{J-1}(\theta) + \pi_{J}(\theta) & \pi_{J-2}(\theta) + \pi_{J-1}(\theta) & \pi_{J-1}(\theta) + \pi_{J}(\theta) \end{array} \right).$$

(29)
and by \(H(S_1, S_2, \theta) \) the submatrix of \(H(\theta) \) obtained by deleting from it the row-indices contained in the set \(S_1 \) and column-indices contained in the set \(S_2 \).

Theorem 2 Under \(H_0 \), the asymptotic distribution of \(S_\phi(p(\theta), p(\tilde{\theta})) \) and \(T_\phi(p, p(\tilde{\theta}), p(\theta)) \) is

\[
\lim_{n_1, n_2 \to \infty} \Pr \left(S_\phi(p(\tilde{\theta}), p(\theta)) \leq x \right) = \lim_{n_1, n_2 \to \infty} \Pr \left(T_\phi(p, p(\tilde{\theta}), p(\theta)) \leq x \right) = \sum_{j=0}^{J-1} w_j(\theta_0) \Pr \left(\chi^2_{(J-1)-j} \leq x \right)
\]

where \(\chi_0^2 = 0 \) a.s. and \(\{ w_j(\theta_0) \}_{j=0}^{J-1} \) is the set of weights such that \(\sum_{j=0}^{J-1} w_j(\theta_0) = 1 \) and

\[
w_j(\theta_0) = \sum_{S \in F(E), \text{card}(S) = j} \Pr (Z_1(S) \geq 0_j) \Pr (Z_2(S) \geq 0_{(J-1)-j}), \tag{30}
\]

where

\[
Z_1(S) \sim N(0_{\text{card}(S)}, H^{-1}(S, S, \theta_0)),
\]

\[
Z_2(S) \sim N(0_{(J-1)-\text{card}(S)}, H(S^C, S^C, \theta_0) - H(S^C, S, \theta_0) H^{-1}(S, S, \theta_0) H^T(S^C, S, \theta_0)),
\]

\(S^C = E - S \) and \(\text{card}(S) \) denotes the cardinal of the set \(S \).

Proof. By following similar arguments of Martin and Balakrishnan we obtain \(H(S, S, \theta_0) = R(S) I_F^{-1}(\theta_0) R^T(S) \) (see Appendix A.3 for the details). In particular, \(H(\theta_0) = H(S, S, \theta_0) \) with \(S = E \), i.e.

\[
H(\theta_0) = R(E) I_F^{-1}(\theta_0) R^T(E)
= (0_{(J-1) \times (J-1)}, G_{J-1}) I_F^{-1}(\theta_0) (0_{(J-1) \times (J-1)}, G_{J-1})^T,
\]

where \(I_F(\theta_0) \) is \(\text{(28)} \). By following the properties of the inverse of the Kronecker product for calculating the inverse of \(\text{(28)} \),

\[
I_F^{-1}(\theta_0) = \left(\frac{1}{\nu_1} \frac{\nu_1}{\nu_1} \right)^{-1} \otimes \left(D_{\pi^*(\theta_0)} - \pi^*(\theta_0) \pi^{*T}(\theta) \right)^{-1}
= \left(\frac{1}{\nu_1} \frac{\nu_1}{\nu_2} \right)^{-1} \otimes \left(D_{\pi^*(\theta_0)}^{-1} + \frac{1}{\pi_j(\theta_0)} 1_{J-1} 1^T_{J-1} \right),
\]

and replacing it in the previous expression of \(H(\theta_0) \),

\[
H(\theta_0) = \frac{1}{\nu_1 \nu_2} G_{J-1} \left(D_{\pi^*(\theta_0)}^{-1} + \frac{1}{\pi_j(\theta_0)} 1_{J-1} 1^T_{J-1} \right) G_{J-1}^T
= \frac{1}{\nu_1 \nu_2} \left(G_{J-1} D_{\pi^*(\theta_0)} G_{J-1}^T + \frac{1}{\pi_j(\theta_0)} e_{J-1} e_{J-1}^T \right),
\]

which is equal to \(\text{(29)} \). \(\blacksquare \)

Even though there is an equality in \(\text{(18)} \), \(\theta \) is not a fixed vector under the null hypothesis since such an equality is effective only for \(\theta_{12} \), and thus \(\theta_2 \) is a vector of nuisance parameters. This means that we have a composite null hypothesis which requires estimation of \(\theta \in \Theta_0 \), through \(\tilde{\theta} \) and we cannot use directly the results based on Theorem 2. The tests performed replacing the parameter \(\theta_0 \) of the asymptotic distribution by \(\tilde{\theta} \) are called “local tests” (see Dardanoni and Forcina (1998)) and they are usually considered to be good approximations of the theoretical tests.
In relation to the weights, \(\{ w_j(\theta_0) \}_{j=1,...,J} \), there are explicit expressions when \(J \in \{ 2, 3, 4 \} \) based on the
matrix given in \(\text{(29)} \) and formulas (3.24), (3.25) and (3.26) in Silvapulle and Sen (2005, page 80). When \(J = 2 \),
\(w_0(\theta_0) = w_1(\theta_0) = \frac{1}{2} \). When \(J = 3 \), the estimators of the weights are

\[
\begin{align*}
w_0(\hat{\theta}) &= \frac{1}{2} - w_2(\hat{\theta}), \\
\frac{1}{2}, \quad \frac{1}{2} + \arccos \hat{\rho}_{12},
\end{align*}
\]

(31)

where

\[
\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii} \hat{\sigma}_{jj}}} = -\sqrt{\frac{(N_{1i} + N_{2i})(N_{1j} + N_{2j} + 1)}{(N_{1i} + N_{2i} + N_{1j} + N_{2j})(N_{1j} + N_{2j} + N_{1,j+1} + N_{2,j+1})}},
\]

(32)

is the correlation associated with the \(i \)-th and \(j \)-th variable of a central random variable with variance-covariance matrix

\[
H(\hat{\theta}) = \frac{1}{\nu_1 \nu_2} \begin{pmatrix}
\frac{\pi_1(\hat{\theta}) + \pi_2(\hat{\theta})}{\pi_1(\hat{\theta}) \pi_2(\hat{\theta})} & -\frac{1}{\pi_2(\hat{\theta})} \\
-\frac{1}{\pi_2(\hat{\theta})} & \frac{\pi_3(\hat{\theta})}{\pi_2(\hat{\theta}) \pi_3(\hat{\theta})}
\end{pmatrix},
\]

where \(\pi_j(\hat{\theta}) = \frac{N_{ij} + N_{jj}}{n} \). When \(J = 4 \),

\[
\begin{align*}
w_0(\hat{\theta}) &= \frac{1}{4\pi} (2\pi - \arccos \hat{\rho}_{12} - \arccos \hat{\rho}_{13} - \arccos \hat{\rho}_{23}) , \\
w_1(\hat{\theta}) &= \frac{1}{4\pi} (3\pi - \arccos \hat{\rho}_{123} - \arccos \hat{\rho}_{132} - \arccos \hat{\rho}_{231}) , \\
w_2(\hat{\theta}) &= \frac{1}{2} - w_0(\hat{\theta}) , \\
w_3(\hat{\theta}) &= \frac{1}{2} - w_1(\hat{\theta}),
\end{align*}
\]

(33)

which depend on the estimation of the marginal \(\text{(32)} \) and conditional correlations

\[
\hat{\rho}_{ij} = \frac{(\hat{\rho}_{ij} - \hat{\rho}_{ik} \hat{\rho}_{kj})}{\sqrt{(1-\hat{\rho}_{ik}^2)(1-\hat{\rho}_{kj}^2)}},
\]

associated with the \(i \)-th and \(j \)-th variable, given a value of the \(k \)-th variable, of a central random variable with variance-covariance matrix

\[
H(\hat{\theta}) = \frac{1}{\nu_1 \nu_2} \begin{pmatrix}
\frac{\pi_1(\hat{\theta}) + \pi_2(\hat{\theta})}{\pi_1(\hat{\theta}) \pi_2(\hat{\theta})} & -\frac{1}{\pi_2(\hat{\theta})} & 0 \\
-\frac{1}{\pi_2(\hat{\theta})} & \frac{\pi_3(\hat{\theta})}{\pi_2(\hat{\theta}) \pi_3(\hat{\theta})} & -\frac{1}{\pi_3(\hat{\theta})} \\
0 & -\frac{1}{\pi_3(\hat{\theta})} & \frac{\pi_4(\hat{\theta})}{\pi_3(\hat{\theta}) \pi_4(\hat{\theta})}
\end{pmatrix}.
\]

It is interesting to point out that the factor related to the sample size in each multinomial sample, \(\frac{1}{\nu_1 \nu_2} \), have no effect in the expression of estimator for the weights of the chi-bar squared distribution These formulas will be considered in the forthcoming sections. It is worthwhile to mention that the normal orthant probabilities for the weights given in \(\text{(30)} \), can also be computed for any value of \(J \) using the \texttt{mvtnorm} R package (see \url{http://CRAN.R-project.org/package=mvtnorm} for details).

5 Numerical example

In this section the data set of the introduction (Table 1), where \(J = 4 \), is analyzed. The sample, a realization of \(N \), is summarized in the following vector

\[
n = (n_{11}, n_{12}, n_{13}, n_{14}, n_{21}, n_{22}, n_{23}, n_{24})^T = (11, 8, 8, 5, 6, 4, 10, 12)^T.
\]
The order restricted MLE under likelihood ratio order, obtained through the E04UCF subroutine of NAG Fortran library [http://www.nag.co.uk/numeric/fl/FLdescription.asp], is

\[
\tilde{\theta} = (-0.7164, -1.0647, -0.1823, 1.5173, 1.5173, 0.6523)^T.
\]

The estimation of the probability vectors of interest is

\[
\hat{p} = (0.1719, 0.1250, 0.1250, 0.0781, 0.0938, 0.0625, 0.1563, 0.1875)^T,
\]

\[
p(\tilde{\theta}) = (0.1740, 0.1228, 0.1250, 0.0781, 0.0916, 0.0647, 0.1563, 0.1875)^T,
\]

\[
p(\hat{\theta}) = (0.1328, 0.0938, 0.1406, 0.1328, 0.1328, 0.0938, 0.1406, 0.1328)^T,
\]

and the estimation of the weights, based on (33), are

\[
w_0(\tilde{\theta}) = 0.0381, \quad w_1(\tilde{\theta}) = 0.2420, \quad w_2(\tilde{\theta}) = 0.4618, \quad w_3(\tilde{\theta}) = 0.2580.
\]

In order to solve analytically the example we shall consider a particular function \(\phi \) in (24) and (25). Taking

\[
\phi_\lambda(x) = \frac{x^{\lambda+1} - x - \lambda(x - 1)}{\lambda(\lambda + 1)},
\]

we get the “the power divergence family”

\[
d_{\phi_\lambda}(p, q) = \frac{1}{\lambda(\lambda + 1)} \left(\sum_{i=1}^{2J} \sum_{j=1}^{J} \frac{p_{ij}^{\lambda+1}}{p_{ij}^\lambda} - 1 \right)
\]

in such a way that for each \(\lambda \in \mathbb{R} - \{-1, 0\} \) a different divergence measure is obtained, and thus

\[
T_\lambda = T_{\phi_\lambda}(p, p(\tilde{\theta}), p(\hat{\theta})) = \frac{2n}{\lambda(\lambda + 1)} \left(\sum_{i=1}^{2J} \sum_{j=1}^{J} \frac{p_{ij}^{\lambda+1}}{p_{ij}^\lambda(\tilde{\theta})} - \sum_{i=1}^{2J} \frac{p_{ij}^{\lambda+1}}{p_{ij}^\lambda(\hat{\theta})} \right),
\]

(34)

\[
S_\lambda = S_{\phi_\lambda}(p(\tilde{\theta}), p(\hat{\theta})) = \frac{2n}{\lambda(\lambda + 1)} \left(\sum_{i=1}^{2J} \sum_{j=1}^{J} \frac{p_{ij}^{\lambda+1}(\tilde{\theta})}{p_{ij}^\lambda(\hat{\theta})} - 1 \right),
\]

(35)

It is also possible to cover the real line for \(\lambda \), by defining

\[
d_{\phi_\lambda}(p, q) = \lim_{\ell \to \lambda} d_{\phi_\ell}(p, q), \quad \lambda \in \{-1, 0\},
\]

and by considering \(T_\lambda = \lim_{\ell \to \lambda} T_\ell \), \(S_\lambda = \lim_{\ell \to \lambda} S_\ell \), for \(\lambda \in \{0, -1\} \), i.e.

\[
T_0 = T_{\phi_0}(p, p(\tilde{\theta}), p(\hat{\theta})) = G^2 = 2n \sum_{i=1}^{2J} \sum_{j=1}^{J} p_{ij}(\tilde{\theta}) \log \frac{p_{ij}(\tilde{\theta})}{p_{ij}(\hat{\theta})},
\]

(36)

\[
T_{-1} = T_{\phi_{-1}}(p, p(\tilde{\theta}), p(\hat{\theta})) = 2n \left(\sum_{i=1}^{2J} \sum_{j=1}^{J} p_{ij}(\tilde{\theta}) \log \frac{p_{ij}(\tilde{\theta})}{p_{ij}} - \sum_{i=1}^{2J} \sum_{j=1}^{J} p_{ij}(\tilde{\theta}) \log \frac{p_{ij}(\hat{\theta})}{p_{ij}} \right)
\]

(37)

and

\[
S_0 = S_{\phi_0}(p, p(\tilde{\theta})) = 2n d_{KL}(p(\tilde{\theta}), p(\hat{\theta})) = 2n \sum_{i=1}^{2J} \sum_{j=1}^{J} p_{ij}(\tilde{\theta}) \log \frac{p_{ij}(\tilde{\theta})}{p_{ij}(\hat{\theta})},
\]

(38)

\[
S_{-1} = S_{\phi_{-1}}(p(\tilde{\theta}), p(\hat{\theta})) = 2n d_{KL}(p(\tilde{\theta}), p(\hat{\theta})) = 2n \sum_{j=1}^{J} p_{ij}(\tilde{\theta}) \log \frac{p_{ij}(\tilde{\theta})}{p_{ij}(\hat{\theta})},
\]

(39)
It is well known that \(d_{φ_0}(p,q) = d_{Kull}(p,q) \) and \(d_{φ_1}(p,q) = d_{Pearson}(p,q) \), which is very interesting since \(G^2 \) and \(X^2 \) are members of the power divergence based test-statistics. It is also worthwhile to mention that \(d_{φ_{-1}}(p,q) = d_{Kull}(q,p) \).

In Table 3, the power divergence based test-statistics for some values of \(λ \) in \(Λ = \{-1.5, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, 1.5, 2, 3\} \), and their corresponding asymptotic \(p \)-values are shown. In all of them it is concluded, with a significance level equal to 0.05, that an equal effect of both treatments is rejected and hence the treatment is more effective than the control to heal the ulcer.

<table>
<thead>
<tr>
<th>Test-statistic (λ)</th>
<th>(-1.5)</th>
<th>(-1)</th>
<th>(-\frac{1}{2})</th>
<th>(0)</th>
<th>(\frac{1}{2})</th>
<th>(1)</th>
<th>(1.5)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_λ)</td>
<td>6.5365</td>
<td>6.3215</td>
<td>6.1562</td>
<td>6.0323</td>
<td>5.9270</td>
<td>5.8965</td>
<td>5.8803</td>
<td>5.8965</td>
<td>6.0244</td>
</tr>
<tr>
<td>(p)-value((T_λ))</td>
<td>0.0175</td>
<td>0.0194</td>
<td>0.0211</td>
<td>0.0225</td>
<td>0.0241</td>
<td>0.0243</td>
<td>0.0241</td>
<td>0.0241</td>
<td>0.0226</td>
</tr>
<tr>
<td>(S_λ)</td>
<td>6.5277</td>
<td>6.3189</td>
<td>6.1551</td>
<td>6.0332</td>
<td>5.9270</td>
<td>5.8977</td>
<td>5.8815</td>
<td>5.8977</td>
<td>6.0244</td>
</tr>
<tr>
<td>(p)-value((S_λ))</td>
<td>0.0175</td>
<td>0.0195</td>
<td>0.0212</td>
<td>0.0225</td>
<td>0.0238</td>
<td>0.0241</td>
<td>0.0241</td>
<td>0.0241</td>
<td>0.0226</td>
</tr>
</tbody>
</table>

Table 3: Power divergence based test-statistics and asymptotic \(p \)-values for the data given Table 1

The \(p \)-values given in Table 3 were obtained by the following algorithm:

Let \(T ∈ \{ T_λ, S_λ \}_{λ ∈ Λ} \) be the test-statistic associated with (10). In the following steps the corresponding asymptotic \(p \)-value, based on the asymptotic distribution of Theorem 2, is calculated once it is supposed we have \(\{ w_j(θ) \}_{j=0}^{-1} \).

STEP 1: Using \(n \) calculate \(p(θ) \) taking into account (19).

STEP 2: Using \(p(θ) \) calculate value \(t \) of test-statistic \(T \) using the corresponding expression in (34)–(39).

STEP 3: If \(T ≤ 0 \) then compute \(p \)-value(\(T \)) := 1 and STOP, otherwise compute \(p \)-value(\(T \)) := 0.

STEP 4: For \(j = 0, ..., J \), do \(p \)-value(\(T \)) := \(p \)-value(\(T \)) + \(w_j(θ) \) Pr \(\{ λ^{(j-1)}_{(J-1)-j} > t \} \).

E.g., the NAG Fortran library subroutine G01ECF can be useful.

Recently, Shan and Ma (2014) have studied a similar problem as (2a)–(2b), but considering different alternative hypotheses, since they consider odds ratios based on cumulative probabilities. Focussed on probabilities rather than cumulative probabilities, we are going to include the asymptotic version of their test-statistic in our numerical study as well as later, in the simulation study: the two sample Wilcoxon test-statistic for discrete data (ties), also known as Wilcoxon mid-rank test-statistic. Metha et al. (1984) proposed such a test-statistic for solving exactly the same alternative hypothesis studied in this paper either as a permutation or as asymptotic test. Our null and alternative hypotheses are a particular case of their hypotheses, taking in their Section 4 \(φ^* = 1 \). The expression of the Wilcoxon mid-rank test-statistic is

\[
W = \sum_{j=1}^{J} r_j n_{1j},
\]

(40)

where \(r_1 = (n_{11} + 2)/2 \) and \(r_j = \sum_{\ell=1}^{j-1} n_{\ell} + (n_{j+1} + 1)/2, \) \(j = 2, ..., J, \) \(n_{1j} = n_{1j} + n_{2j}, \) and the corresponding asymptotic distribution is normal with mean \(μ_W = n (n+1)/2 \) and variance

\[
σ^2_W = n_1 n_2 \frac{n+1-n(\bar{n}-1)}{12} \sum_{j=1}^{J} (n_{1j}^2 - n_{1j}).
\]

The Wilcoxon mid-rank test-statistic for the data of Table 1 is \(W = 875 \) and with the corresponding \(p \)-value, 0.01094, the same conclusion is obtained, i.e. rejecting the hypothesis of equal effect of both treatments with 5% significance level.
6 Simulation study

6.1 2x2 table: one sided in comparison with the two sided test

In this section we illustrate in what sense the likelihood ratio test given in (20),

\[G^2 = 2n \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{p_{ij} \log \frac{p_{ij}(\theta)}{p_{ij}(\theta)}}{p_{ij}(\theta)} = 2 \sum_{i=1}^{2} \sum_{j=1}^{2} n_{ij} \log \frac{\pi_{ij}(\theta)}{\pi_{ij}(\theta)}, \]

is different from the one for the non order restricted alternative hypothesis (two sided test, in 2 × 2 tables)

\[G^2 = 2n \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{p_{ij} \log \frac{\bar{p}_{ij}}{p_{ij}(\theta)}}{p_{ij}(\theta)} = 2 \sum_{i=1}^{2} \sum_{j=1}^{2} n_{ij} \log \frac{n_{ij} / n_i}{\pi_{ij}(\theta) / n_{ij} / n}. \]

For simplicity the case of \(J = 2 \) is taken into account, where the (simple null) one sided test

\[H_0 : \vartheta_1 = 1, \quad \text{vs.} \quad H_1 : \vartheta_1 > 1, \tag{43} \]

with \(\vartheta_1 = \pi_{11} \pi_{22} / \pi_{21} \pi_{12} = \pi_{11} (1 - \pi_{21}) / \pi_{21} (1 - \pi_{11}) \), or

\[H_0 : \pi_{11} = \pi_{21}, \quad \text{vs.} \quad H_1 : \pi_{11} > \pi_{21}, \]

is tested with (41), and on the other hand the two sided test

\[H_0 : \vartheta_1 = 1, \quad \text{vs.} \quad H_1 : \vartheta_1 \neq 1, \tag{45} \]

or

\[H_0 : \pi_{11} = \pi_{21}, \quad \text{vs.} \quad H_1 : \pi_{11} \neq \pi_{21}, \]

is carried out with (42). The same procedure would be possible to perform for any \(\phi \)-divergence based test considered in this paper. We also consider the mid-rank Wilcoxon test for both version of the alternative hypothesis. To clarify the parameter space in both tests, we shall rewrite (43) and (45) as follows

\[H_0 : \vartheta_1 \in \Psi_0, \quad \text{vs.} \quad H_1 : \vartheta_1 \in \Psi_1, \]

where \(\Psi_0 = \{1\}, \Psi_1 = (1, +\infty) \),

\[H_0 : \vartheta_1 \in \Psi_0, \quad \text{vs.} \quad H_1' : \vartheta_1 \in \Psi_1', \]

where \(\Psi_1' = (-\infty, 1) \cup (1, +\infty) \). The parameter spaces for (43) and (45) are \(\Psi = \Psi_0 \cup \Psi_1 = [1, +\infty) \) and \(\Psi' = \Psi_0 \cup \Psi_1' = \mathbb{R} \), respectively. The same hypotheses in term of probabilities are given by

\[H_0 : (\pi_{11}, \pi_{21}) \in \Lambda_0, \quad \text{vs.} \quad H_1 : (\pi_{11}, \pi_{21}) \in \Lambda_1, \]

where \(\Lambda_0 = \{ (\pi_{11}, \pi_{21}) \in (0, 1) \times (0, 1) : \pi_{11} = \pi_{21} \}, \Lambda_1 = \{ (\pi_{11}, \pi_{21}) \in (0, 1) \times (0, 1) : \pi_{11} > \pi_{21} \}, \)

\[H_0 : (\pi_{11}, \pi_{21}) \in \Lambda_0, \quad \text{vs.} \quad H_1 : (\pi_{11}, \pi_{21}) \in \Lambda_1', \]

where \(\Lambda_1' = \{ (\pi_{11}, \pi_{21}) \in (0, 1) \times (0, 1) : \pi_{11} \neq \pi_{21} \} \). The corresponding parameter spaces in term of probabilities are given by

\[\Lambda = \Lambda_0 \cup \Lambda_1 = \{ (\pi_{11}, \pi_{21}) \in (0, 1) \times (0, 1) : \pi_{11} \geq \pi_{21} \}, \]

\[\Lambda' = \Lambda_0 \cup \Lambda_1' = (0, 1) \times (0, 1). \]
The likelihood ratio test-statistics for (43) and (45) are different since in the numerator of (41), \(\pi_{ij}(\theta) \), is obtained maximizing the likelihood function in \(\Lambda \), while the numerator of (42), \(n_{ij}/n \), is maximized in \(\Lambda' \). Even though both estimators are different, they require a similar computation:

- If \(\hat{\pi}_{11} = \frac{n_{11}}{n_1} > \hat{\pi}_{21} = \frac{n_{21}}{n_2} \), then \(\pi_{11}(\hat{\theta}) = \frac{n_{11}}{n_1} > \pi_{21}(\hat{\theta}) = \frac{n_{21}}{n_2} \) and \(G^2 = \hat{G}^2 = 2\sum_{i=1}^{2}\sum_{j=1}^{2} n_{ij} \log \frac{n_{ij}/n_{i\cdot}}{n_{i\cdot}/n} \);

- If \(\hat{\pi}_{11} = \frac{n_{11}}{n_1} \leq \hat{\pi}_{21} = \frac{n_{21}}{n_2} \), then \(\pi_{11}(\hat{\theta}) = \pi_{11}(\hat{\theta}) = \frac{n_{11}}{n_1} \leq \pi_{21}(\hat{\theta}) = \pi_{21}(\hat{\theta}) = \frac{n_{21}}{n_2} \) and \(G^2 = \hat{G}^2 = 0 \).

Hence, taking into account the asymptotic distributions, i.e., \(\frac{1}{2} \chi^2_0 + \frac{1}{2} \chi^2_1 \) for (43) and \(\chi^2_1 \) for (45), we obtain

\[
p-value(G^2) = \begin{cases} \frac{1}{2} \Pr \left(\chi^2 > 2\sum_{i=1}^{2}\sum_{j=1}^{2} n_{ij} \log \frac{n_{ij}/n_{i\cdot}}{n_{i\cdot}/n} \right), & \text{if } \hat{\pi}_{11} = \frac{n_{11}}{n_1} > \frac{n_{21}}{n_2}, \\
1, & \text{if } \hat{\pi}_{11} = \frac{n_{11}}{n_1} \leq \frac{n_{21}}{n_2}, \end{cases}
\]

and

\[
p-value(G^2) = \Pr \left(\chi^2 > 2\sum_{i=1}^{2}\sum_{j=1}^{2} n_{ij} \log \frac{n_{ij}/n_{i\cdot}}{n_{i\cdot}/n} \right).
\]

A third test is the composite null one sided test

\[
H_0 : \pi_{ij} = 1, \quad (\pi_{ij} \in \Psi_1) \quad \text{vs.} \quad H_1 : \pi_{ij} > 1, \quad (\pi_{ij} \in \Psi_1)
\]

\[
H_0 : \pi_{11} \leq \pi_{21}, \quad ((\pi_{11}, \pi_{21}) \in \Lambda_5) \quad \text{vs.} \quad H_1 : \pi_{11} > \pi_{21}, \quad ((\pi_{11}, \pi_{21}) \in \Lambda_1),
\]

with \(\Psi_1 = (-\infty, 1] \) and \(\Lambda_1 = \{(\pi_{11}, \pi_{21}) \in (0, 1) \times (0, 1) \} \). For the corresponding test-statistic,

\[
G^2 = 2n \sum_{i=1}^{2}\sum_{j=1}^{2} \pi_{ij} \log \frac{\pi_{ij}}{\pi_{ij}(\theta)} = 2\sum_{i=1}^{2}\sum_{j=1}^{2} n_{ij} \log \frac{n_{ij}/n_{i\cdot}}{n_{i\cdot}/n} : \]

- If \(\hat{\pi}_{11} = \frac{n_{11}}{n_1} \geq \hat{\pi}_{21} = \frac{n_{21}}{n_2} \), then \(\pi_{11}(\hat{\theta}) = \frac{n_{11}}{n_1} \geq \pi_{12}(\hat{\theta}) = \frac{n_{11}}{n_1} \) and \(G^2 = \hat{G}^2 = 2\sum_{i=1}^{2}\sum_{j=1}^{2} n_{ij} \log \frac{n_{ij}/n_{i\cdot}}{n_{i\cdot}/n} \);

- If \(\hat{\pi}_{11} = \frac{n_{11}}{n_1} < \hat{\pi}_{21} = \frac{n_{21}}{n_2} \), then \(\pi_{11}(\hat{\theta}) = \frac{n_{11}}{n_1} < \pi_{21}(\hat{\theta}) = \frac{n_{21}}{n_2} \) and \(G^2 = \hat{G}^2 = 0 \).

Hence, both one sided test-statistics, the composite null one, \(G^2 \), and the simple null one, \(G^2 \), are almost equal and

\[
p-value(G^2) = \begin{cases} \frac{1}{2} \Pr \left(\chi^2 > 2\sum_{i=1}^{2}\sum_{j=1}^{2} n_{ij} \log \frac{n_{ij}/n_{i\cdot}}{n_{i\cdot}/n} \right), & \text{if } \hat{\pi}_{11} = \frac{n_{11}}{n_1} \geq \frac{n_{21}}{n_2}, \\
1, & \text{if } \hat{\pi}_{11} = \frac{n_{11}}{n_1} < \frac{n_{21}}{n_2}. \end{cases}
\]

The mid-rank \(W \) test-statistic for (43) and (45) is the same, (40), as well as the distribution under the null, but

\[
p-value(W) = \Pr \left(\mathcal{N}(0, 1) < -\frac{(r_1n_{11} + r_2n_{12}) - n_1(n+1)/2}{\sqrt{n_1n_2 \frac{n+1}{n+2} \frac{1}{\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_1n_2}}}} \right)
\]

for (43) and

\[
p-value(W) = 2\Pr \left(\mathcal{N}(0, 1) > -\frac{|(r_1n_{11} + r_2n_{12}) - n_1(n+1)/2|}{\sqrt{n_1n_2 \frac{n+1}{n+2} \frac{1}{\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_1n_2}}}} \right)
\]

for (45).

The following short simulation study considers \(R = 100,000 \) realizations, \(\pi_{1i}^{(h)} \), \(i = 1, 2 \), \(h = 1, ..., R \), of

\[
N_{1i} \sim \text{Bin}(n_i, \pi_{1i}), \quad i = 1, 2,
\]
Figure 1: Histograms of G^2, \tilde{G}^2 and W with $n_1 = 40$, $n_2 = 20$ and $\pi_{i1} = 0.35$, $i = 1, 2$.
with \(\pi_{11} = \pi_{21} = 0.35 \) and \(n_1 = 40 \) and \(n_2 = 20 \). In Figure 1 a histogram of \(G^2 \), \(G^2 \) and \(W \) is shown where the shape of the density function of each can be recognized. In Table 3 the simulated significance levels (\(\hat{\alpha} \)) and powers (\(\hat{\beta} \)) are calculated as the proportion of statistics with \(p \)-values smaller than the nominal level \(\alpha = 0.05 \). The test-statistic based on the Hellinger distance \(S_{-1/2} \), given in (54), is also included. From this simulation study it is concluded that the \(G^2 \) likelihood ratio test-statistic and the \(W \) Wilcoxon mid-rank test for \(2 \times 2 \) contingency tables, are specific procedures for the one sided test (43) since the parameter spaces are different, but are strongly related with the two sided test (45) in the way of calculating the value of the test-statistic and the corresponding \(p \)-value. It is remarkable that the simulated significance level for the one-sided \(W \) Wilcoxon mid-rank test for \(2 \times 2 \) contingency tables exhibits a slightly better approximation of the nominal level in comparison with the likelihood ratio test \(G^2 \) for the one sided test (43), and the likelihood ratio test \(G^2 \) slightly better than the test-statistic based on the Hellinger distance \(S_{-1/2} \). The powers of the test-statistics are calculated for \(\pi_{11} = 0.45 > \pi_{21} = 0.35 \). The test-statistic based on the Hellinger distance \(S_{-1/2} \) has the greatest power and the \(W \) Wilcoxon mid-rank test the smallest power for the one sided test (43). In Section 6.2 a more extensive simulation study is considered with a criterion to select the best test-statistic within a broader class of power divergence based test-statistics. Finally, the two sided test-statistics, \(G^2 \) and \(W \), exhibit a worse power than the one sided test-statistics. This behaviour was obviously expected, since being \(\Psi \subset \Psi' \) or equivalently \(\Lambda \subset \Lambda' \), the one sided tests have always a better power than the two sided tests.

\[
\begin{array}{cccccc}
\hline
S_{-1/2} \text{ (one sided)} & G^2 \text{ (one sided)} & G^2 \text{ (two sided)} & \text{one sided } W & \text{two sided } W \\
\hline
\hat{\alpha} & 0.0567 & 0.0559 & 0.0533 & 0.0495 & 0.0489 \\
\hat{\beta} & 0.2027 & 0.2025 & 0.1186 & 0.1865 & 0.1149 \\
\hline
\end{array}
\]

Table 4: Simulated significance levels (\(\pi_{11} = \pi_{21} = 0.35 \)), \(\hat{\alpha} \), and powers (\(\pi_{11} = 0.45 \), \(\pi_{21} = 0.35 \)), \(\hat{\beta} \), for \(S_{-1/2} \), \(G^2 \), \(G^2 \) and \(W \) test-statistics with \(n_1 = 40 > n_2 = 20 \).

6.2 Power divergence test-statistics: simulated size and powers

In this Section the performance of the power divergence test statistics (34)-(39) is studied in terms of the simulated exact size and simulated power of the test, based on small and moderate sample sizes. A simulation experiment with seven scenarios is designed in Table 5, taking into account the sample sizes of the two independent samples. The pairs of scenarios (A,G), (B,F) and (C,E) should have very similar exact significance levels, since the sample sizes of the two samples are symmetrical (the ratio of one sample is the inverse of the other one). With respect to the choice of \(\lambda \), the parameters for the power divergence test statistics, the interest is focused on the interval \([-1.5,3]\). Note that the test-statistics applied in the numerical example are covered as particular cases.

\[
\begin{array}{cccccccc}
\hline
\text{scenarios} & \text{sc. A} & \text{sc. B} & \text{sc. C} & \text{sc. D} & \text{sc. E} & \text{sc. F} & \text{sc. G} \\
\hline
n_1 & 20 & 20 & 20 & 20 & 16 & 10 & 4 \\
n_2 & 4 & 10 & 16 & 20 & 20 & 20 & 20 \\
\frac{\text{ratio}}{\text{sample sizes}} & 5 & 2 & 1.25 & 1 & 0.8 & 0.5 & 0.2 \\
\hline
\end{array}
\]

Table 5: Scenarios, based on sample sizes, for the simulation study in a contingency table \(2 \times 3 \).

The algorithm described in Section 5 is taken into account to calculate the \(p \)-value of each test-statistic \(T \in \{ T_{\lambda}, S_{\lambda} \}_{\lambda \in [-1.5,3]} \), with a sample \(N \), and this is repeated independently \(R = 25000 \) times. The simulated exact power was computed as

\[
\hat{\beta}_T = \hat{\beta}_T(\delta) = \frac{\text{number of replications of } T \text{ for which the } p \text{-value is less than } \alpha}{R},
\]
for the probability vectors

\[\pi_i(\theta(\delta)) = (\pi_{i1}(\theta(\delta)), \pi_{i2}(\theta(\delta)), \pi_{i3}(\theta(\delta)))^T \]

\[\pi_{ij}(\theta(\delta)) = \frac{1 + i(j-1)\delta}{1 + i\delta}, \quad i = 1, 2, \quad j = 1, 2, 3, \]

for \(\delta \in \Xi = \{0.1, 0.5, 1.0, 1.5\} \). The simulated exact size was computed as

\[\hat{\alpha}_T = \frac{\text{number of replications of } T \text{ for which the } p\text{-value is less than } \alpha}{R} , \]

for the probability vectors

\[\pi_i(\theta_0) = (\pi_{i1}(\theta_0), \pi_{i2}(\theta_0), \pi_{i3}(\theta_0))^T \]

\[\pi_{ij}(\theta_0) = \frac{1}{3}, \quad i = 1, 2, \quad j = 1, 2, 3, \]

which corresponds to the case of \(\delta = 0 \) for \(\pi_i(\theta(\delta)) \).

In Table 6 the local odds ratios,

\[\vartheta_j = \vartheta_j(\delta) = \frac{1 + (j-1)\delta}{1 + 2(j-1)\delta} \frac{1 + 2j\delta}{1 + j\delta}, \]

\(j = 1, 2 \), are shown for \(\delta \in \{0\} \cup \Xi \). Notice that in \(\vartheta = \theta(\delta) = (\vartheta_1(\delta), \vartheta_2(\delta))^T \) some of the components are further from \(\vartheta(0) = 1_2 \) (null hypothesis), as the value of \(\delta > 0 \) is further from 0. This means that a greater value of the estimation of the power function might be obtained, as \(\delta > 0 \) is greater. This claim is supported by the fact that some values of the components of \(\vartheta = \theta(\delta) \) decrease as \(\delta > 0 \) increases but more slowly than the others increase. In addition, for a fixed value of \(\delta > 0 \), it is expected a greater value of \(\hat{\beta}_T(\delta) \), as \(n \) is greater (the worst powers in Scenario A and the best powers in Scenario D). We have also added in Table 6 the last three rows for two reasons, first, to show that for any fixed value of \(\delta \), \(\pi_{i1}(\theta(\delta))/\pi_{i1}(\theta(0)) \) is non-decreasing as \(j \), the ordinal category, increases and second, to clarify the meaning of the two asterisks contained in the table. It is clear that for a big value of \(\delta \), \(\pi_{i1}(\theta(\delta)) > 0 \) goes to zero on the right for \(i = 1, 2 \), but in the practice, due to the empty cells in the contingency table, the estimator of the ratio \(\pi_{21}(\theta(\delta))/\pi_{11}(\theta(\delta)) \) becomes 1 rather than \(\frac{1}{2} \) (and \(\vartheta_1(\delta) \) becomes 1). This was our experience when we used values of \(\delta \) bigger than 1.5, i.e. the power becomes quite little in the practice.

<table>
<thead>
<tr>
<th>(\delta = 0)</th>
<th>(\delta = 0.1)</th>
<th>(\delta = 0.5)</th>
<th>(\delta = 1)</th>
<th>(\delta = 1.5)</th>
<th>(\delta = \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vartheta_1 = \vartheta_1(\delta))</td>
<td>1.000</td>
<td>1.091</td>
<td>1.333</td>
<td>1.500</td>
<td>1.600</td>
</tr>
<tr>
<td>(\vartheta_2 = \vartheta_2(\delta))</td>
<td>1.000</td>
<td>1.069</td>
<td>1.125</td>
<td>1.111</td>
<td>1.094</td>
</tr>
<tr>
<td>(\pi_{21}(\theta(\delta))/\pi_{11}(\theta(\delta)))</td>
<td>0.33/0.33</td>
<td>0.28/0.30</td>
<td>0.17/0.22</td>
<td>0.11/0.17</td>
<td>0.08/0.13</td>
</tr>
<tr>
<td>(\pi_{22}(\theta(\delta))/\pi_{12}(\theta(\delta)))</td>
<td>0.33/0.33</td>
<td>0.33/0.33</td>
<td>0.33/0.33</td>
<td>0.33/0.33</td>
<td>0.33/0.33</td>
</tr>
</tbody>
</table>

Table 6: Theoretical local odd ratios for the Monte Carlo study.

Once a nominal size \(\alpha = 0.05 \) is established, Table 7 summarizes the simulated exact sizes in all the scenarios for the test-statistic \(T \in \{T_{\lambda}, S_{\lambda}, W\}_{\lambda \in A} \), with \(A = \{-1.5, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, 1.5, 2, 3\} \). We have plotted 3 x 2 graphs in Figures 8 and we refer them as plots in three rows. In the first row of Figures 8 we can see on the left the exact power in all the scenarios for the test-statistic \(\{T_{\lambda}, W\}_{\lambda \in [-1.5, 3]} \) and on the right for the test-statistic \(\{S_{\lambda}, W\}_{\lambda \in [-1.5, 3]} \). In order to make a comparison of exact powers, we cannot directly proceed without considering the exact sizes. For this reason we are going to give a procedure based on two steps, for scenarios B-G.
Step 1: We are going to check for all the power divergence based test-statistics the criterion given by Dale (1986), i.e.,

$$|\logit(1 - \hat{\alpha}_T) - \logit(1 - \alpha)| \leq e$$

(53)

with \(\logit(p) = \log \left(\frac{p}{1-p} \right)\). We only consider the values of \(\lambda\) such that \(\hat{\alpha}_T\) satisfies (53) with \(e = 0.35\), then we shall only consider the test-statistics such that \(\hat{\alpha}_T \in [0.0357, 0.0695]\), in all the scenarios. This criterion has been considered for some authors, see for instance Cressie et al. (2003) and Martín and Pardo (2012). The cases satisfying the criterion are marked in bold in Table 7 and comprise those values in the absissa of the plot between the dashed band (the dashed line in the middle represents the nominal size), and we can conclude that we must not consider in our study \(T \in \{ T_\lambda, S_\lambda, W \}_{\lambda \in [-1.5, -0.4]}\).

Step 2: We compare all the test statistics obtained in Step 1 with the classical likelihood ratio test \((G^2 = T_0)\) as well as the classical Pearson test statistic \((X^2 = S_1)\). To do so, we have calculated the relative local efficiencies

$$\hat{\rho}_T = \hat{\rho}_T(\delta) = \frac{(\hat{\beta}_T(\delta) - \hat{\alpha}_T) - (\hat{\beta}_{T_0}(\delta) - \hat{\alpha}_{T_0})}{\hat{\beta}_{T_0}(\delta) - \hat{\alpha}_{T_0}}, \quad \hat{\rho}_S = \hat{\rho}_S(\delta) = \frac{(\hat{\beta}_S(\delta) - \hat{\alpha}_T) - (\hat{\beta}_{S_1}(\delta) - \hat{\alpha}_{S_1})}{\hat{\beta}_{S_1}(\delta) - \hat{\alpha}_{S_1}}.$$

In Figures 3 and 4 the powers and the relative local efficiencies are summarized. The second rows of the figures represent \(\hat{\rho}_T\), while in the third row is plotted \(\hat{\rho}_S\), on the left it is considered \(T \in \{ T_\lambda, W \}_{\lambda \in [-1.5, 3]}\) and \(T \in \{ S_\lambda, W \}_{\lambda \in [-1.5, 3]}\) on the right. In Figure 5 we show only one row since it represents the atypical case in which the exact powers are less that the exact significance level for the values of \(\lambda\) satisfying the Dale’s criterion and so, it does not make sense to compare the powers.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(\hat{\alpha}{T{-1.5}})</th>
<th>(\hat{\alpha}{T{-1}})</th>
<th>(\hat{\alpha}{T{1/2}})</th>
<th>(\hat{\alpha}_{T_0})</th>
<th>(\hat{\alpha}{T{2/3}})</th>
<th>(\hat{\alpha}_{T_1})</th>
<th>(\hat{\alpha}{T{1.5}})</th>
<th>(\hat{\alpha}_{T_2})</th>
<th>(\hat{\alpha}_{T_3})</th>
<th>(\hat{\alpha}_W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0013</td>
<td>0.0359</td>
<td>0.1725</td>
<td>0.0745</td>
<td>0.0468</td>
<td>0.0460</td>
<td>0.0517</td>
<td>0.0586</td>
<td>0.0949</td>
<td>0.0509</td>
</tr>
<tr>
<td>B</td>
<td>0.0670</td>
<td>0.0612</td>
<td>0.0664</td>
<td>0.0597</td>
<td>0.0541</td>
<td>0.0503</td>
<td>0.0511</td>
<td>0.0536</td>
<td>0.0619</td>
<td>0.0509</td>
</tr>
<tr>
<td>C</td>
<td>0.0747</td>
<td>0.0686</td>
<td>0.0608</td>
<td>0.0537</td>
<td>0.0494</td>
<td>0.0485</td>
<td>0.0478</td>
<td>0.0492</td>
<td>0.0573</td>
<td>0.0485</td>
</tr>
<tr>
<td>D</td>
<td>0.0688</td>
<td>0.0653</td>
<td>0.0631</td>
<td>0.0577</td>
<td>0.0538</td>
<td>0.0528</td>
<td>0.0522</td>
<td>0.0530</td>
<td>0.0572</td>
<td>0.0495</td>
</tr>
<tr>
<td>E</td>
<td>0.0751</td>
<td>0.0691</td>
<td>0.0610</td>
<td>0.0548</td>
<td>0.0511</td>
<td>0.0502</td>
<td>0.0494</td>
<td>0.0490</td>
<td>0.0591</td>
<td>0.0512</td>
</tr>
<tr>
<td>F</td>
<td>0.0665</td>
<td>0.0614</td>
<td>0.0681</td>
<td>0.0616</td>
<td>0.0554</td>
<td>0.0518</td>
<td>0.0517</td>
<td>0.0539</td>
<td>0.0615</td>
<td>0.0506</td>
</tr>
<tr>
<td>G</td>
<td>0.0013</td>
<td>0.0363</td>
<td>0.1802</td>
<td>0.0775</td>
<td>0.0477</td>
<td>0.0466</td>
<td>0.0526</td>
<td>0.0602</td>
<td>0.0965</td>
<td>0.0541</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(\hat{\alpha}{S{-1.5}})</th>
<th>(\hat{\alpha}{S{-1}})</th>
<th>(\hat{\alpha}{S{1/2}})</th>
<th>(\hat{\alpha}_{S_0})</th>
<th>(\hat{\alpha}{S{2/3}})</th>
<th>(\hat{\alpha}_{S_1})</th>
<th>(\hat{\alpha}{S{1.5}})</th>
<th>(\hat{\alpha}_{S_2})</th>
<th>(\hat{\alpha}_{S_3})</th>
<th>(\hat{\alpha}_W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.2106</td>
<td>0.2055</td>
<td>0.1572</td>
<td>0.0745</td>
<td>0.0429</td>
<td>0.0430</td>
<td>0.0499</td>
<td>0.0507</td>
<td>0.0752</td>
<td>0.0509</td>
</tr>
<tr>
<td>B</td>
<td>0.0799</td>
<td>0.0762</td>
<td>0.0653</td>
<td>0.0596</td>
<td>0.0543</td>
<td>0.0497</td>
<td>0.0509</td>
<td>0.0524</td>
<td>0.0584</td>
<td>0.0509</td>
</tr>
<tr>
<td>C</td>
<td>0.0729</td>
<td>0.0676</td>
<td>0.0581</td>
<td>0.0537</td>
<td>0.0505</td>
<td>0.0492</td>
<td>0.0491</td>
<td>0.0501</td>
<td>0.0583</td>
<td>0.0485</td>
</tr>
<tr>
<td>D</td>
<td>0.0675</td>
<td>0.0656</td>
<td>0.0620</td>
<td>0.0577</td>
<td>0.0552</td>
<td>0.0543</td>
<td>0.0541</td>
<td>0.0543</td>
<td>0.0577</td>
<td>0.0495</td>
</tr>
<tr>
<td>E</td>
<td>0.0745</td>
<td>0.0683</td>
<td>0.0584</td>
<td>0.0547</td>
<td>0.0518</td>
<td>0.0507</td>
<td>0.0504</td>
<td>0.0515</td>
<td>0.0598</td>
<td>0.0512</td>
</tr>
<tr>
<td>F</td>
<td>0.0814</td>
<td>0.0780</td>
<td>0.0656</td>
<td>0.0616</td>
<td>0.0551</td>
<td>0.0509</td>
<td>0.0516</td>
<td>0.0528</td>
<td>0.0572</td>
<td>0.0506</td>
</tr>
<tr>
<td>G</td>
<td>0.2170</td>
<td>0.2123</td>
<td>0.1653</td>
<td>0.0775</td>
<td>0.0446</td>
<td>0.0450</td>
<td>0.0510</td>
<td>0.0516</td>
<td>0.0782</td>
<td>0.0541</td>
</tr>
</tbody>
</table>

Table 7: \(\hat{\alpha}_T\), for \(T \in \{ T_\lambda, S_\lambda, W \}_{\lambda \in \Lambda}\) in scenarios of Table 5.
The plots are interpreted as follows:

a) In all the scenarios a similar pattern is observed when plotting the exact power, $\hat{\beta}_T$, for $\lambda \in [-1, 3]$ since a U shaped curve is obtained. This means that the exact power is higher in the corners of the interval in comparison with the classical likelihood ratio test ($G^2 = T_0$) as well as the classical Pearson test statistic ($X^2 = S_1$), contained in the middle.

b) If we pay attention on the local efficiencies with respect to G^2 and X^2, $\hat{\rho}_T$ and $\hat{\rho}^*_{T}$, to find positive values of them we need to consider $\lambda \in [-1, 0)$ or $\lambda \in (1, 3]$ and thus it confirms what was said in a). On the other hand, comparing the left hand ($T = T_\lambda$) side of $\hat{\rho}_T$ with the right side ($T = S_\lambda$) and doing the same for $\hat{\rho}^*_{T}$, a slightly higher values of the local efficiencies of S_λ are seen in comparison with T_λ. For this reason we consider that $\{S_\lambda\}_{\lambda \in [-1, 0)}$ have a better performance than the classical test-statistics, G^2 and X^2 in scenarios B-E and $\{S_\lambda\}_{\lambda \in (1, 3]}$ have a better performance than the classical test-statistics, G^2 and X^2 in scenarios F-G. The Wilcoxon test-statistic has in all the scenarios worse performance with respect to the best classical asymptotic statistic, G^2 for scenarios B-E and X^2 for scenarios F-G.

c) What is not so common in comparison with usual models of categorical data is to find small size sample sizes with so good performance in exact size as it happens in the case of the likelihood ratio order. Moreover, the best test-statistic are not very common to be selected as those with better performance than the classical ones.
Figure 3: Power and relative local efficiencies for T_λ, S_λ and W in scenario B.
Figure 4: Power and relative local efficiencies for T_λ, S_λ and W in scenario C.
Figure 5: Power and relative local efficiencies for T_λ, S_λ and W in scenario D.
Figure 6: Power and relative local efficiencies for T_λ, S_λ and W in scenario E.
Figure 7: Power and relative local efficiencies for T_{λ}, S_{λ} and W in scenario F.
Figure 8: Power and relative local efficiencies for T_λ, S_λ and W in scenario G.
7 Concluding remark

The likelihood ratio ordering is a useful technique for comparing treatments in clinical trials, for this reason it is vitally important to provide test-statistics to improve the classical ones. Having considered an asymptotic distribution for two order restricted treatments, the weights needed to manage the associated asymptotic chi-bar distribution are calculated in a simple way and the useful matrix for that, $H(\hat{\theta})$, has an easy interpretation in terms of log-linear modeling. The simulation study highlights the good performance of all the proposed tests in relation to the exact size and the comparison is made in terms of the power. For small and moderate sample sizes there are better choices than the likelihood ratio test and the Wilcoxon test-statistics inside the family of ϕ-divergences. We think that this is a specific characteristic of the likelihood ordering, and this is the reason of having obtained as the best test-statistics a set of values of $\lambda \in [-1, 0) \cup (1, 3]$ not very common in the literature of phi-divergence test-statistics. As exception, notice that

$$S_{-1/2} = S_{d_{-1/2}}(p(\tilde{\theta}), p(\hat{\theta})) = 8n \left(1 - \sum_{i=1}^{2} \sum_{j=1}^{J} \rho_{ij}(\tilde{\theta}) \rho_{ij}(\hat{\theta})\right)$$

$$= 4n \sum_{i=1}^{2} \sum_{j=1}^{J} \left(p_{ij}(\tilde{\theta}) - p_{ij}(\hat{\theta})\right)^2$$

$$= 4n \text{Hel}^2(p(\tilde{\theta}), p(\hat{\theta})),$$

where

$$\text{Hel}(p(\tilde{\theta}), p(\hat{\theta})) = \left(\sum_{i=1}^{2} \sum_{j=1}^{J} \left(p_{ij}(\tilde{\theta}) - p_{ij}(\hat{\theta})\right)^2\right)^{1/2},$$

is the Hellinger distance between the probability vectors $p(\tilde{\theta})$ and $p(\hat{\theta})$. Therefore, one of the test-statistic we are proposing in this paper is a function of the well-known Hellinger distance, which has been used in many different statistical problems. We think that the reason why this happens is related to the robust properties of such a test-statistic, since when dealing with the likelihood ratio ordering, under the alternative hypothesis, on the left side of the contingency table empty cells tend to appear. In particular, the theoretical probability in the first cell for the second treatment, π_{21}, is the smallest one and this circumstance does influence in the results obtained for skew sample sample sizes in both treatments.

Acknowledgement 3 The authors acknowledge the referee. We modified and improved the manuscript according to comments and questions pointed by the referee.

References

With the complete notation, our interest is,

$$\text{Suppose we are interested in testing } H_0: \mathbf{R}_{12} \theta_{12} = 0 \text{ vs } H_1: \mathbf{R}_{12}(S) \theta_{12} = 0_{\text{card}(S)} \text{ and } \mathbf{R}_{12} \theta_{12} \neq 0_{J-1}. \quad (55)$$

Under H_0, the parameter space is $\Theta_0 = \left\{ \theta \in \mathbb{R}^{2(J-1)} : \mathbf{R} \theta = 0_{J-1} \right\}$ and the MLE of θ in Θ_0 is given by $\hat{\theta} = \arg\max_{\theta \in \Theta_0} \ell(N; \theta)$. Under the alternative hypothesis the parameter space is $\Theta(S) = \{ \theta \in \mathbb{R}^{2(J-1)} : \mathbf{R}(S) \theta = 0_{J-1} \}$, that is, under both hypotheses, H_0 and H_1, the parameter space is $\Theta(S) = \{ \theta \in \mathbb{R}^{2(J-1)} : \mathbf{R}(S) \theta = 0_{J-1} \}$ and the MLE of θ in $\Theta(S)$ is $\hat{\theta}(S) = \arg\max_{\theta \in \Theta(S)} \ell(N; \theta)$. By following the same idea we used for building test-statistics (24)-(25) we shall consider two family of test-statistics based on ϕ-divergence measures,

$$T_\phi(\mathbf{p}, \mathbf{p}(\hat{\theta}(S)), \mathbf{p}(\hat{\theta})) = 2n(d_\phi(\mathbf{p}, \mathbf{p}(\hat{\theta}(S))) - d_\phi(\mathbf{p}, \mathbf{p}(\hat{\theta}(S)))) \quad (56)$$

and

$$S_\phi(\mathbf{p}(\hat{\theta}(S)), \mathbf{p}(\hat{\theta})) = 2nd_\phi(\mathbf{p}(\hat{\theta}(S)), \mathbf{p}(\hat{\theta})). \quad (57)$$

A.1 Proposition

Under H_0,

$$S_\phi(\mathbf{p}(\hat{\theta}(S)), \mathbf{p}(\hat{\theta})) = T_\phi(\mathbf{p}, \mathbf{p}(\hat{\theta}(S)), \mathbf{p}(\hat{\theta})) + \alpha_p(1), \quad (58)$$

the asymptotic distribution of (56) and (57) is χ^2 with $df = J - 1 - \text{card}(S)$.

Proof. The second order Taylor expansion of function $d_\phi(\theta) = d_\phi(\mathbf{p}(\theta), \mathbf{p}(\theta))$ about $\hat{\theta}$ is

$$d_\phi(\theta) = d_\phi(\hat{\theta}) + (\theta - \hat{\theta})^T \frac{\partial}{\partial \theta} d_\phi(\theta) \bigg|_{\theta = \hat{\theta}} + \frac{1}{2} (\theta - \hat{\theta})^T \frac{\partial^2}{\partial \theta \partial \theta^T} d_\phi(\theta) \bigg|_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + o \left(\| \theta - \hat{\theta} \|^2 \right), \quad (59)$$

where

$$\frac{\partial}{\partial \theta} d_\phi(\theta) \bigg|_{\theta = \hat{\theta}} = 0_{J-1},$$

$$\frac{\partial^2}{\partial \theta \partial \theta^T} d_\phi(\theta) \bigg|_{\theta = \hat{\theta}} = \phi''(1) I_F^{(n_1, n_2)}(\hat{\theta}),$$

and $I_F^{(n_1, n_2)}(\theta)$ was defined at the beginning of Section 4. Let $\overline{\theta}$ be the parameter vector such that $\overline{\mathbf{p}} = \mathbf{p}(\overline{\theta})$, where $\mathbf{p}(\overline{\theta}) = 1_{2J} \overline{u} + W \overline{\theta}$, with $\overline{u} = -\log(1_{2J} \exp(W \overline{\theta}))$, is the saturated log-linear model. In particular, for $\theta = \overline{\theta}$ we have

$$d_\phi(\mathbf{p}(\overline{\theta}), \mathbf{p}(\overline{\theta})) = \frac{\phi''(1)}{2} (\overline{\theta} - \hat{\theta})^T I_F^{(n_1, n_2)}(\overline{\theta} - \hat{\theta}) + o \left(\| \overline{\theta} - \hat{\theta} \|^2 \right).$$
In a similar way it is obtained
\[
d_{\phi}(p(\theta), p(\hat{\theta}(S))) = \frac{\phi''(1)}{2} \left(\hat{\theta} - \bar{\theta}(S) \right)^T I_{F}^{(n_1, n_2)} \left(\hat{\theta}(S) \right) \left(\hat{\theta} - \bar{\theta}(S) \right) + o \left(\left\| \hat{\theta} - \bar{\theta}(S) \right\|^2 \right),
\]

Multiplying both sides of the equality by \(\frac{2n}{\phi''(1)} \) and taking the difference in both sides of the equality
\[
T_{\phi}(p, p(\hat{\theta}(S)), p(\bar{\theta})) = \frac{2n}{\phi''(1)} \left(d_{\phi}(p(\bar{\theta}), p(\hat{\theta}(S))) - d_{\phi}(p(\bar{\theta}), p(\bar{\theta}(S))) \right)
= \sqrt{n}(\hat{\theta} - \bar{\theta})^T I_{F}^{(n_1, n_2)} \left(\hat{\theta}(S) \right) \sqrt{n}(\hat{\theta} - \bar{\theta}) + o \left(\left\| \sqrt{n}(\hat{\theta} - \bar{\theta}) \right\|^2 \right)

Now we are going to generalize the three types of estimators by \(\hat{\theta}(\bullet) \), understanding that for \(\bullet = \emptyset, \hat{\theta}(\emptyset) = \bar{\theta}, R(\emptyset) = 0_{(J-I) \times (2J-I)}, \) for \(\bullet = E, \hat{\theta}(E) = \hat{\theta}, R(E) = R, \) and \(\bullet = S, \hat{\theta}(S) \) and \(R(S) \) as originally defined. It is well-known that
\[
\sqrt{n}(\hat{\theta}(\bullet) - \theta_{0}) = \Gamma(\theta_{0}, \bullet) \left(\frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \ell(N; \theta) \right)_{\theta = \theta_{0}} + o_{p}(1_{2(J-I)}), \tag{60}
\]
where \(\theta_{0} \) is the true and unknown value of the parameter,
\[
\Gamma(\theta_{0}, \bullet) = I_{F}^{-1}(\theta_{0}) - I_{F}^{-1}(\theta_{0}) R_{\bullet}^{-1}(\theta_{0}) R_{\bullet}^{-1}(\theta_{0}) R_{\bullet}^{-1}(\theta_{0}), \tag{61}
\]
is the variance covariance matrix of \(\hat{\theta}(\bullet) \), and \(\frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \ell(N; \theta) \mid_{\theta = \theta_{0}} \xrightarrow{\mathcal{L}} N(0_k, I_{F}(\theta_{0})) \) by the Central Limit Theorem. We shall denote
\[
\Gamma(\theta_{0}) = \Gamma(\theta_{0}, E) = I_{F}^{-1}(\theta_{0}) - I_{F}^{-1}(\theta_{0}) R_{E}^{-1}(\theta_{0}) R_{E}^{-1}(\theta_{0}) R_{E}^{-1}(\theta_{0}) R_{E}^{-1}(\theta_{0}).
\]
Taking the differences of both sides of the equality in \(\tag{60} \) with cases \(\bullet = \emptyset \) and \(\bullet = E \), we obtain
\[
\sqrt{n}(\hat{\theta} - \bar{\theta}) = (I_{F}^{-1}(\theta_{0}) - \Gamma(\theta_{0})) \left(\frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \ell(N; \theta) \right)_{\theta = \theta_{0}} + o_{p}(1_{2(J-I)}), \tag{62}
\]
with cases \(\bullet = \emptyset \) and \(\bullet = S \),
\[
\sqrt{n}(\hat{\theta} - \bar{\theta}(S)) = (I_{F}^{-1}(\theta_{0}) - \Gamma(\theta_{0}, S)) \left(\frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \ell(N; \theta) \right)_{\theta = \theta_{0}} + o_{p}(1_{2(J-I)}), \tag{63}
\]
and taking into account \(I_{F}(\hat{\theta}) \xrightarrow{\mathcal{P}} I_{F}(\theta_{0}) \),
\[
T_{\phi}(p, p(\hat{\theta}(S)), p(\bar{\theta}))
= \frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \ell(N; \theta) \left(\Gamma(\theta_{0}, S) - \Gamma(\theta_{0}) \right) I_{F}(\theta_{0}) \left(\Gamma(\theta_{0}, S) - \Gamma(\theta_{0}) \right) \frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \ell(N; \theta) \mid_{\theta = \theta_{0}} + o_{p}(1)
= Y^T Y + o_{p}(1), \tag{64}
\]
where
\[
Y = A(\theta_{0}) \left(\Gamma(\theta_{0}, S) - \Gamma(\theta_{0}) \right) A(\theta_{0})^T Z,
\]

with \(Z \sim N(0_{j-1}, I_{j-1}) \) and \(A(\theta_0) \) is the Cholesky’s factorization matrix for a non singular matrix such a Fisher information matrix, that is \(I_F(\theta_0) = A(\theta_0)^T A(\theta_0) \). In other words,

\[
Y \sim N(0_k, A(\theta_0) (\Gamma(\theta_0, S) - \Gamma(\theta_0)) A(\theta_0)^T),
\]

where the variance covariance matrix is idempotent and symmetric. Following Lemma 3 in Ferguson (1996, page 57), \(A(\theta_0) (\Gamma(\theta_0, S) - \Gamma(\theta_0)) A(\theta_0)^T \) is idempotent and symmetric, if only if \(T_\phi (\hat{p}, p(\tilde{\theta}(S)), p(\tilde{\theta})) \) is a chi-square random variable with degrees of freedom

\[
df = \text{rank}(A(\theta_0) (\Gamma(\theta_0, S) - \Gamma(\theta_0)) A(\theta_0)^T) = \text{trace}(A(\theta_0) (\Gamma(\theta_0, S) - \Gamma(\theta_0)) A(\theta_0)^T).
\]

Since

\[
(\Gamma(\theta_0, S) - \Gamma(\theta_0))^T I_F(\theta_0) (\Gamma(\theta_0, S) - \Gamma(\theta_0)) = \Gamma(\theta_0, S) - \Gamma(\theta_0),
\]

the condition is reached. The effective degrees of freedom are given by

\[
df = \text{trace}(\Gamma(\theta_0, S) A(\theta_0)^T A(\theta_0)) - \text{trace}(\Gamma(\theta_0) A(\theta_0)^T A(\theta_0)) = \text{trace}(\Gamma(\theta_0, S) I_F(\theta_0)) - \text{trace}(\Gamma(\theta_0) I_F(\theta_0))
\]

\[
= \text{trace}(\Gamma(\theta_0, S) I_F^{-1}(\theta_0) \Gamma(S)^{-1} R(S) I_F^{-1}(\theta_0) R(S))
\]

\[
= (J - 1) - \text{card}(S).
\]

Regarding the other test-statistic \(S_\phi(p(\hat{\theta}(S)), p(\hat{\theta})) \), observe that if we take \(\phi = 0 \), in particular for \(\theta = \tilde{\theta}(S) \) it is obtained

\[
d_\phi(\hat{\theta}(S)) = \frac{\phi''(1)}{2} (\hat{\theta}(S) - \tilde{\theta})^T I_F(\hat{\theta}) (\hat{\theta}(S) - \tilde{\theta}) + o(\|\hat{\theta}(S) - \tilde{\theta}\|^2).
\]

In addition, \(\sqrt{n} \tilde{\theta}(S) \rightarrow D \tilde{\theta}(S) \) is

\[
= \left(\Gamma(\theta_0, S) - \Gamma(\theta_0) \right) \frac{1}{\sqrt{n}} \left. \frac{\partial^2 \ell(N; \theta)}{\partial \theta^2} \right|_{\theta = \hat{\theta}} + o_p(1)_{2(J-1)},
\]

and taking into account \(I_F(\hat{\theta}) \xrightarrow{n \rightarrow \infty} I_F(\theta_0) \) and \((64)\), it follows \((58)\), which means from Slutsky’s Theorem that both test-statistics have the same asymptotic distribution. ■

A.2 Lemma

Let \(Y \) be a \(k \)-dimensional random variable with normal distribution \(N(0_k, Q) \) with \(Q \) being a projection matrix, that is idempotent and symmetric, and let \(d_i \) be the fixed \(k \)-dimensional vectors such that for them either \(Qd_i = 0_k \) or \(Qd_i = d_i \), \(i = 1, ..., k \), is true. Then \(\left(Y^T Y \right) d_i^T Y \geq 0, i = 1, ..., k \) \(\sim \chi^2_{df} \), where \(df = \text{rank} (Q) \).

Proof. This result can be found in several sources, for instance in Kudô (1963, page 414), Barlow et al. (1972, page 128) and Shapiro (1985, page 139). ■

A.3 Proof of Theorem 2

We shall perform the proof for \(S_\phi(p(\hat{\theta}), p(\hat{\theta})) \). It suppose that it is true \(R\theta \geq 0_{j-1} \) and we want to test \(R\theta = 0_{j-1} (H_0) \). It is clear that if \(H_0 \) is not true is because there exists some index \(i \in E \) such that \(R^i \theta > 0 \). Let us consider the family of all possible subsets in \(E \), denoted by \(\mathcal{F}(E) \), then we shall specify more thoroughly \(\theta \) by \(\tilde{\theta} \) when there exists \(S \in \mathcal{F}(E) \) such that

\[
R(S) \tilde{\theta} = 0_{\text{card}(S)} \quad \text{and} \quad R(S^C) \tilde{\theta} > 0_{(J-1) - \text{card}(S)}.
\]

29
It is clear that for a sample $\tilde{\theta} = \tilde{\theta}(S)$ can be true only for a unique set of indices $S \in \mathcal{F}(E)$, and thus by applying the Theorem of Total Probability

$$\Pr \left(S_\phi(p(\tilde{\theta}), p(\tilde{\theta})) \leq x \right) = \sum_{S \in \mathcal{F}(E)} \Pr \left(S_\phi(p(\tilde{\theta}), p(\tilde{\theta})) \leq x, \tilde{\theta} = \tilde{\theta}(S) \right).$$

From the Karush-Khun-Tucker necessary conditions (see for instance Theorem 4.2.13 in Bazaraa et al. (2006)) to solve the optimization problem $\max \ell(N; \theta)$ s.t. $R\theta \geq 0_{J-1}$, associated with $\tilde{\theta}$,

$$\frac{\partial}{\partial \theta} \ell(N; \theta) + \sum_{i=1}^{J-1} \lambda_i R^T(\{i\}) = 0, i = 1, ..., J - 1,$$

$$\lambda_i R(\{i\}) \theta = 0, i = 1, ..., J - 1,$$

the only conditions which characterize the MLE $\tilde{\theta} = \tilde{\theta}(S)$ with a specific $S \in \mathcal{F}(E)$, are the complementary slackness conditions $R(\{i\}) \theta > 0$, for $i \in S$ and $\lambda_i < 0$, for $i \in S^C$, since $\frac{\partial}{\partial \theta} \ell(N; \theta) + \lambda_i R^T(\{i\}) = 0, i = 1, ..., J - 1, R(\{i\}) \theta = 0, i \in S^C$ and $\lambda_i = 0$, for $i \in S$ are redundant conditions once we know that the Karush-Khun-Tucker necessary conditions are true for all the possible sets $S \in \mathcal{F}(E)$ which define $\theta = \theta(S)$. For this reason we can consider

$$\Pr \left(S_\phi(p(\tilde{\theta}), p(\tilde{\theta})) \leq x, \tilde{\theta} = \tilde{\theta}(S) \right) =$$

$$\Pr \left(S_\phi(p(\tilde{\theta}), p(\tilde{\theta})) \leq x, \tilde{\lambda}(S) < \theta_{\text{card}(S)}, R(S^C) \tilde{\theta}(S) > \theta_{J-1-\text{card}(S)} \right),$$

where $\tilde{\lambda}(S)$ is the vector of the vector of Karush-Khun-Tucker multipliers associated with estimator $\tilde{\theta}(S)$. Furthermore, under H_0, $R\tilde{\theta}(S) = R\tilde{\theta}(S) - R\theta_0$, because $R\theta_0 = 0_{J-1}$, hence

$$\Pr \left(S_\phi(p(\tilde{\theta}), p(\tilde{\theta})) \leq x \right) = \sum_{S \in \mathcal{F}(E)} \Pr \left(S_\phi(p(\tilde{\theta}), p(\tilde{\theta})) \leq x, \tilde{\lambda}(S) < \theta_{\text{card}(S)}, R(S^C) \tilde{\theta}(S) - R(S^C)\theta_0 > \theta_{J-1-\text{card}(S)} \right),$$

where $\text{card}(S^C) = (J - 1) - \text{card}(S)$. On the other hand, (65a) and (65b) are also true for $(\tilde{\theta}^T(S), \tilde{\lambda}^T(S))^T$ according to the Lagrange multipliers method. Hence, $\tilde{\theta}(S) = \theta(S)$ and $\lambda(S) = \tilde{\lambda}(S)$. It follows that:

- under $\tilde{\theta} = \theta(S)$, $S_\phi(p(\tilde{\theta}), p(\tilde{\theta})) = S_\phi(p(\tilde{\theta}(S), p(\tilde{\theta}))$ and taking into account Proposition A.1

$$S_\phi(p(\tilde{\theta}), p(\tilde{\theta})) = T_\phi(p, p(\tilde{\theta}(S)), p(\tilde{\theta})) + o_p(1)$$

$$= \left(A(\theta_0)(\Gamma(\theta_0), S) - \Gamma(\theta_0) \right) A(\theta_0)^T Z + \left(A(\theta_0)(\Gamma(\theta_0), S) - \Gamma(\theta_0) \right) A(\theta_0)^T Z + o_p(1),$$

$$= Z^T A(\theta_0)(\Gamma(\theta_0), S) - \Gamma(\theta_0) \right) A(\theta_0)^T Z + o_p(1),$$

where $Z \sim \mathcal{N}(0_k, I_k)$.

- under $\tilde{\lambda}(S) = \tilde{\lambda}(S)$ and from Sen et al. (2010, page 267 formula (8.6.28))

$$\frac{1}{\sqrt{n}} \tilde{\lambda}(S) = \sqrt{n} Q^T(\theta_0, S) \frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \ell(N; \theta) \bigg|_{\theta = \theta_0} + o_p(1_{\text{card}(S)})$$

$$= Q^T(\theta_0, S) A(\theta_0)^T Z + o_p(1_{\text{card}(S)}),$$

where

$$Q(\theta_0, S) = - I_F^{-1}(\theta_0) R^T(S) L(\theta_0, S) \left(R(S) I_F^{-1}(\theta_0) R^T(S) \right)^{-1}.$$
• under $\hat{\theta} = \hat{\theta}(S)$ and from \(\Theta[100]\)

\[
\sqrt{n} \left(R(S^C)\hat{\theta}(S) - R(S^C)\theta_0 \right) = \sqrt{n}R(S^C)\Gamma(\theta_0, S) \frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \ell(N; \theta) \bigg|_{\theta = \theta_0} + o_p(1_{\text{card}(S^C)})
\]

\[
= R(S^C)\Gamma(\theta_0, S) A(\theta_0)^T Z + o_p(1_{\text{card}(S^C)}).
\]

That is,

\[
\lim_{n_1, n_2 \to \infty} \Pr \left(S_3(p(\hat{\theta}), p(\hat{\theta})) \leq x \right) = \sum_{S \in \mathcal{F}(E)} \Pr \left(Z_3^T(S) Z_3(S) \leq x, Z_1(S) \geq 0_{\text{card}(S)}, Z_2(S) \geq 0_{\text{card}(S^C)} \right)
\]

\[
= \sum_{S \in \mathcal{F}(E)} \Pr \left(Z_3^T(S) Z_3(S) \leq x \right) \left[\Pr \left(Z_1(S) \geq 0_{\text{card}(S)}, Z_2(S) \geq 0_{\text{card}(S^C)} \right) \Pr \left(Z_1(S) \geq 0_{\text{card}(S)}, Z_2(S) \geq 0_{\text{card}(S^C)} \right) \right),
\]

where

\[
Z_3(S) = M_3(\theta_0, S) Z, \quad M_3(\theta_0, S) = A(\theta_0) (\Gamma(\theta_0, S) - \Gamma(\theta_0)) A(\theta_0)^T,
\]

\[
Z_1(S) = M_1(\theta_0, S) Z, \quad M_1(\theta_0, S) = -Q(\theta_0, S) A(\theta_0)^T,
\]

\[
Z_2(S) = M_2(\theta_0, S) Z, \quad M_2(\theta_0, S) = R(S^C) \Gamma(\theta_0, S) A(\theta_0)^T.
\]

Taking into account that $M_3(\theta_0, S) M_2^T(\theta_0, S) = M_2^T(\theta_0, S)$ and $M_3(\theta_0, S) M_1^T(\theta_0, S) = 0_{(J-1) \times \text{card}(S)}$, by applying the lemma given in Section \[A.2\]

\[
\Pr \left(Z_3^T(S) Z_3(S) \leq x \left| \left(Z_1^T(S), Z_2^T(S) \right)^T \geq 0_{J-1} \right) \right) = \Pr \left(\chi^2 \leq x \right)
\]

where

\[
df = \text{rank} \left(A(\theta_0) (\Gamma(\theta_0, S) - \Gamma(\theta_0)) A(\theta_0)^T \right) = \text{trace} \left(A(\theta_0) (\Gamma(\theta_0, S) - \Gamma(\theta_0)) A(\theta_0)^T \right)
\]

\[
= (J-1) - \text{card}(S).
\]

Finally,

\[
\lim_{n_1, n_2 \to \infty} \Pr \left(S_3(p(\hat{\theta}), p(\hat{\theta})) \leq x \right)
\]

\[
= \sum_{S \in \mathcal{F}(E)} \Pr \left(\chi^2_{(J-1)-\text{card}(S)} \leq x \right) \Pr \left(Z_1(S) \geq 0_{\text{card}(S)}, Z_2(S) \geq 0_{\text{card}(S^C)} \right)
\]

\[
= \sum_{j=0}^{J-1} \Pr \left(\chi^2_{(J-1)-j} \leq x \right) \sum_{S \in \mathcal{F}(E), \text{card}(S)=j} \Pr \left(Z_1(S) \geq 0_{\text{card}(S)}, Z_2(S) \geq 0_{\text{card}(S^C)} \right),
\]

and since $Q(\theta_0, S) I_{\mathcal{F}(E)}(\theta_0) \Gamma(\theta_0, S) = 0_{\text{card}(S) \times (J-1)}$, it holds $M_1(\theta_0, S) M_2^T(\theta_0, S) = 0_{\text{card}(S) \times \text{card}(S^C)}$ which means that $Z_1(S)$ and $Z_2(S)$ are independent, that is

\[
\lim_{n_1, n_2 \to \infty} \Pr \left(S_3(p(\hat{\theta}), p(\hat{\theta})) \leq x \right) = \sum_{j=0}^{J-1} \Pr \left(\chi^2_{(J-1)-j} \leq x \right) w_j(\theta_0)
\]

31
where the expression of $w_j(\theta_0)$ is (30). We have also,

$$\text{Var}(Z_1(S)) = M_1(\theta_0, S)M_2^T(\theta_0, S) = Q^T(\theta_0, S)I_P(\theta_0)Q(\theta_0, S) = \left(R(S)I_P^{-1}(\theta_0)R^T(S) \right)^{-1} = H^{-1}(S, S, \theta_0),$$

$$\text{Var}(Z_2(S)) = M_2(\theta_0, S)M_1^T(\theta_0, S) = R(S^C)\Gamma(\theta_0, S)I_P(\theta_0)\Gamma^T(\theta_0, S)R^T(S^C) = R(S^C)\Gamma(\theta_0, S)R^T(S^C) = H(S^C, S^C, \theta_0) - H(S^C, S, \theta_0)H^{-1}(S, S, \theta_0)H^T(S^C, S, \theta_0).$$

The proof of $T_\phi(\bar{p}, p(\hat{\theta}), p(\tilde{\theta}))$ is almost immediate from the proof for $S_\phi(p(\hat{\theta}), p(\tilde{\theta}))$ and taking into account that for some $S \in \mathcal{F}(E)$

$$T_\phi(\bar{p}, p(\hat{\theta}), p(\tilde{\theta})) = T_\phi(\bar{p}, p(\hat{\theta}(S)), p(\tilde{\theta})) + o_p(1) = S_\phi(p(\hat{\theta}), p(\tilde{\theta})).$$

B Fortran Code: example.f95

```fortran
!--------------------------------------------------------------------------------
! This program is only valid for 2 by 4 contingency tables
! (for other sizes some changes must be done:
! change the value of J and follow the formulas of the weights)
! To run it, the NAG library is required to have installed
! To change the sample go to line 18
! The FORTRAN program generates the outputs in 8 text files
!--------------------------------------------------------------------------------

MODULE ParGlob
INTEGER fail
INTEGER, PARAMETER :: I=2, J=4, nlam=9
DOUBLE PRECISION pr(I*J), W(I*J,I*J-1), RR((I-1)*(J-1),I*(J-1)), betatil(I*(J-1)), &
    pHat(I*J), zz((I-1)*(J-1)), tbt((I-1)*(J-1),(I-1)*(J-1)), bb((I-1)*(J-1),(I-1)*(J-1)), &
    we(0:(I-1)*(J-1)), k1((I-1),(I-1)), k2((J-1),(J-1)), hh((I-1)*(J-1),(I-1)*(J-1)), &
    hInv((I-1)*(J-1),(I-1)*(J-1)), ntt, nu(I), ppi(J), nn(I*J), ppit(I,J), un, sample(I*J),&
    odds(I-1,J-1), nt(I)
DOUBLE PRECISION, PARAMETER:: lamb(nlam)=(-1.5d0,-1.d0,-0.5d0,0.d0,2.d0/3.d0,1.d0,1.5d0, &
    2.d0,3.d0/3.d0), del=0.0d0, pi=3.14159265358979323846264338327950d0, sample=(/11.d0,8.d0, &
    8.d0,5.d0,6.d0,4.d0,10.d0,12.d0/)
END MODULE ParGlob
!--------------------------------------------------------------------------------

PROGRAM Example
USE ParGlob
IMPLICIT NONE
INTEGER n, m, ifail
DOUBLE PRECISION estT, estS, pval, table(I,J), contT(nlam), contS(nlam), iniTheta(I*J-1), &
    ro(3,2), marg(J), rank(J), wilc0, wilc, meanWilc, sdWilc, pValWilc, g0leaf
DO n=1,I
    DO m=1,J
        ppit(n,m)=(1.d0/3.d0)*((1.d0+n*(m-1.d0)*del)/(1.d0+n*del))
    ENDDO
ENDO
```

32
ENDDO
DO n=1,I-1
 DO m=1,J-1
 odds(n,m)=pπt(n,m)*pπt(n+1,m+1)/(pπt(n+1,m)*pπt(n,m+1))
 ENDDO
ENDDO

marg=sample(1:J)+sample(J+1:2*J)
rank=0.d0
DO n=2,J
 rank(n)=rank(n-1)+marg(n-1)
ENDDO
rank=rank+(marg+1.d0)/2.d0
wilc0=SUM(rank*sample(1:J))
nt(1)=SUM(sample(1:J))
nt(2)=SUM(sample(J+1:2*J))
n=SUM(nt)
n=nt/ntt
meanWilc=nt(1)∗(nt(1)+nt(2)+1.d0)/2.d0
sdWilc=nt(1)∗nt(2)∗(nt(1)+nt(2)+1.d0)/12.d0
sdWilc=sdWilc-nt(1)∗nt(2)∗SUM(marg**2-marg)/(12.d0*(nt(1)+nt(2))*(nt(1)+nt(2)-1.d0))
sdWilc=SQRT(sdWilc)
wilc=(wilc0-meanWilc)/sdWilc
CALL DesignM()
CALL RestrictM()

nn=sample
table=TRANSPOSE(RESHAPE(nn,(/J,I/)))
DO m=1,J
 pπt(m)=SUM(table(:,m))/ntt
ENDDO
initTheta=0.d0
CALL emvH01(initTheta)
IF (fail.NE.0) THEN
 initTheta=0.1d0
 CALL emvH01(initTheta)
 IF (fail.NE.0) THEN
 initTheta=-0.1d0
 CALL emvH01(initTheta)
 ENDIF
ENDIF
ENDDO

21 FORMAT (20F10.4)
22 FORMAT (20F15.10)
OPEN (10, FILE = "theta-Tilde.DAT", action="write", status="replace")
WRITE(10,*) " ** Theta tilde ** "]
WRITE(10,*) " ----------------------------- "]
WRITE(10,21) (betatil(m), m=1,I*(J-1))
CLOSE(10)

OPEN (10, FILE = "P-Bar.DAT", action="write", status="replace")
WRITE(10,*) " ** Probability Vector: P-Bar ** "
WRITE(10,*) " ------------------------------------- "
WRITE(10,21) (nn(n)/(SUM(nn)), n=1,I*J)
CLOSE(10)

OPEN (10, FILE = "P-theta-Tilde.DAT", action="write", status="replace")
WRITE(10,*) " ** Probability Vector: P-theta-Tilde ** "
WRITE(10,*) " --- "
WRITE(10,21) (pr(n), n=1,I*J)
CLOSE(10)

CALL ProbVector2(nu,ppi)
OPEN (10, FILE = "P-theta-Hat.DAT", action="write", status="replace")
WRITE(10,*) " ** Probability Vector: P-theta-Hat ** "
WRITE(10,*) " --- "
WRITE(10,21) (pHat(n), n=1,I*J)
CLOSE(10)

CALL Kmatrices()
CALL hMatrix()
ro(1,1)=hh(1,2)/SQRT(hh(1,1)*hh(2,2))
ro(2,1)=hh(1,3)/SQRT(hh(1,1)*hh(3,3))
ro(3,1)=hh(2,3)/SQRT(hh(2,2)*hh(3,3))
ro(1,2)=(ro(1,1)-ro(2,1))/SQRT((1.d0-ro(2,1)*ro(2,1))*(1.d0-ro(3,1)*ro(3,1)))
ro(2,2)=(ro(2,1)-ro(1,1)*ro(3,1))/SQRT((1.d0-ro(1,1)*ro(1,1))*(1.d0-ro(3,1)*ro(3,1)))
ro(3,2)=(ro(3,1)-ro(2,1)*ro(1,1))/SQRT((1.d0-ro(2,1)*ro(2,1))*(1.d0-ro(1,1)*ro(1,1)))
we(0)=(2.d0*pi-ACOS(ro(1,1))-ACOS(ro(2,1))-ACOS(ro(3,1)))/(4.d0*pi)
we(1)=(3.d0*pi-ACOS(ro(1,2))-ACOS(ro(2,2))-ACOS(ro(3,2)))/(4.d0*pi)
we(2)=0.5d0-we(0)
we(3)=0.5d0-we(1)
ifail=-1
pValWilc=g01eaf('L',wilc,ifail)

OPEN (10, FILE = "T-TESTS.DAT", action="write", status="replace")
WRITE(10,*) " ** T-test Statistics ** "
WRITE(10,*) " -------------------------------- "
WRITE(10,21) (lamb(n), n=1,nlam)
WRITE(10,*) 'test-statistics'
WRITE(10,21) (estT(lamb(n)), n=1,nlam)
WRITE(10,*) 'p-values'
WRITE(10,22) (pval(estT(lamb(n))), n=1,nlam)
WRITE(10,*) " ** Wilcoxon Statistics ** "
WRITE(10,*) " --------------------------------- "
WRITE(10,*) 'test-statistic'
WRITE(10,21) wilc0
WRITE(10,*) 'p-value'
WRITE(10,21) pValWilc
CLOSE(10)

OPEN (10, FILE = "S-TESTS.DAT", action="write",status="replace")
WRITE(10,*) " ** S-test Statistics **
WRITE(10,*) " --------------------------------
WRITE(10,21) (lamb(n), n=1,nlam)
WRITE(10,*) 'test-statistics'
WRITE(10,21) (estS(lamb(n)), n=1,nlam)
WRITE(10,*) 'p-values'
WRITE(10,22) (pval(estS(lamb(n))), n=1,nlam)
WRITE(10,*) " ** Wilcoxon Statistics **
WRITE(10,*) " ---------------------------------
WRITE(10,21) wilc0
WRITE(10,*) 'p-value'
WRITE(10,21) pValWilc
CLOSE(10)

OPEN (10, FILE = "WEIGHTS.DAT", action="write",status="replace")
WRITE(10,*) " ** Weights chi-bar **
WRITE(10,*) " -----------------------------
WRITE(10,22) (REAL(we(n)), n=0,(I-1)*(J-1))
WRITE(10,*) " --
CLOSE(10)

END PROGRAM Example

!--
! This subroutine calculates the design matrix of a saturated log-linear model
! with canonical parametrization
!--
SUBROUTINE DesignM()
USE ParGlob
IMPLICIT NONE

INTEGER h

DOUBLE PRECISION one_I(I), one_J(J), A(I,I-1), B(J,J-1), W12(I*J,(I-1)*(J-1)), &
 W1(I*J,I-1), W2(I*J,J-1)

one_I=1.d0
one_J=1.d0
A=0.d0
DO h=1,I-1
 A(h,h)=1.d0
 ENDDO
B=0.d0
DO h=1,J-1
 B(h,h)=1.d0
ENDDO

CALL Kronecker(I-1,I-1,A,J-1,one_J,W1)
CALL Kronecker(I,1,one_I,J-1,B,W2)
CALL Kronecker(I,I-1,A,J,J-1,B,W12)

W(:,1:I-1)=W1
W(:,I+J-2)=W2
W(:,I+J-1:I*J-1)=W12

END SUBROUTINE DesignM

!--
! This subroutine calculates the restriction matrix
!--
SUBROUTINE RestricM()
USE ParGlob
IMPLICIT NONE

INTEGER h
DOUBLE PRECISION R2((I-1)*(J-1),J-1), R12((I-1)*(J-1),(I-1)*(J-1)), GI(I-1,I-1), &
 GJ(J-1,J-1)
GI=0.d0
DO h=1,I-1
 GI(h,h)=1.d0
 IF (h.LT.I-1) THEN
 GI(h,h+1)=-1.d0
 ENDIF
ENDDO
GJ=0.d0
DO h=1,J-1
 GJ(h,h)=1.d0
 IF (h.LT.J-1) THEN
 GJ(h,h+1)=-1.d0
 ENDIF
ENDDO
R2 = 0.d0
CALL Kronecker(I-1,I-1,GI,J-1,J-1,GJ,R12)
RR(1:(I-1)*(J-1),1:J-1) = R2
RR(1:(I-1)*(J-1),J:I*(J-1)) = R12

END SUBROUTINE RestricM
SUBROUTINE Kronecker(n,m,A,p,q,B,C)
IMPLICIT NONE

INTEGER n, m, p, q
DOUBLE PRECISION A(n,m), B(p,q), C(n*p,m*q)
INTEGER i, j, k, d

DO i=1,n
 DO j=1,m
 DO k=1,p
 DO d=1,q
 C((i-1)*p+k,(j-1)*q+d) = A(i,j)*B(k,d)
 ENDDO
 ENDDO
 ENDDO
ENDDO
END SUBROUTINE Kronecker

SUBROUTINE ProbVector(beta)
USE ParGlob
IMPLICIT NONE

INTEGER n
DOUBLE PRECISION beta(I*(J-1)), theta(I*J-1), u

theta(I:I*J-1)=beta
u=LOG(nt(I))-LOG(ntt)-LOG(1.d0+SUM(EXP(beta(1:J-1))))

DO n=1,I-1
 theta(n)=LOG(nt(n))-LOG(ntt)-u-LOG(1.d0+SUM(EXP(beta(1:J-1)+&
 beta(n*(J-1)+1:(n+1)*(J-1)))))
ENDDO

pr=EXP(MATMUL(W,theta))*EXP(u)
END SUBROUTINE ProbVector
SUBROUTINE ProbVector2(nnu, pppi)
USE ParGlob
IMPLICIT NONE

INTEGER h, s
DOUBLE PRECISION nnu(I), pppi(J), aux(I,J)

DO h=1,I
 DO s=1,J
 IF (pppi(s).GT.0.d0) THEN
 aux(h,s)=nnu(h)*pppi(s)
 ELSE
 aux(h,s)=1.d-5
 ENDIF
 ENDDO
ENDDO

pHat=reshape(TRANSPOSE(aux),(/I*J/))

END SUBROUTINE ProbVector2

SUBROUTINE emvH01(x)
USE ParGlob
IMPLICIT NONE

INTEGER, PARAMETER:: n = I*J-1, nclin = (I-1)*(J-1), ncnln = 0, lda = nclin
INTEGER, PARAMETER:: ldcj = 1, ldr = n , liw= 3*n+nclin+2*ncnln, lw=530
INTEGER iter, ifail, istate(n+nclin+ncnln), iwork(liw), iuser(1), nstate
DOUBLE PRECISION objf, A(nclin,n), user(1), work(lw), R(ldr,n), C(ncnln), CJAC(ldcj,n)
DOUBLE PRECISION clamda(n+nclin+ncnln), bl(n+nclin+ncnln), bu(n+nclin+ncnln), x(n), objgrd(n)
EXTERNAL confun, e04ucf, e04uef, objfun

A=0.d0
A(:,I:I*J-1)=RR
bl(1:n)=-1.d6
bl(n+1:n+nclin)=0.d0
bu=1.d6
ifail = -1
CALL e04uef ('INFINITE BOUND SIZE = 1.e5')

38
CALL e04uef ('ITERATION LIMIT = 250')
CALL e04uef ('PRINT LEVEL = 0')
CALL e04ucf(n, nclin, ncnln, lda, ldcj, ldr, A, bl, bu, confun, objfun, iter, istate, C,&
 CJAC,clanda,objc, objgrd, R, x, iwork, liw, work, lw, iuser, user, ifail)
betatil=x(I:I*J-1)
fail=ifail
END SUBROUTINE envH01

SUBROUTINE objfun(mode, n, x, objf, objgrd, nstate, iuser, user)
 USE ParGlob
 IMPLICIT NONE
 INTEGER mode, n, iuser(1), nstate
 DOUBLE PRECISION objf, objgrd(n), x(n), user(1)
 CALL ProbVector(x(I:I*(J-1)))
 IF (mode .EQ.0 .OR. mode .EQ.2) THEN
 objf =-SUM(nn*LOG(pr))
 ENDIF
 IF (mode .EQ.1 .OR. mode .EQ.2) THEN
 objgrd=MATMUL(TRANSPOSE(W),SUM(nn)*pr-nn)
 ENDIF
END

SUBROUTINE confun (mode, ncnln, g, ldcj, needc, x, c, cjac, nstate, iuser, user)
 INTEGER mode, ncnln, g, ldcj, needc(*), nstate, iuser(*)
 DOUBLE PRECISION x(*), c(*), cjac(ldcj,*), user(*)
END

!--
! Subroutine to calculate T-statistic.
!--
FUNCTION estT(lan)
 USE ParGlob
 IMPLICIT NONE
 DOUBLE PRECISION estT, lan, aux, n
 INTEGER h

 n=SUM(nn)
 aux=0.d0
 IF ((lan .GE. -1.d-9) .AND. (lan .LE. 1.d-9)) THEN !lan=0
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 aux=aux+nn(h)*LOG(pr(h)/pHat(h))
 ENDIF
 ENDDO
 estT=2.d0*aux
 ENDIF
END
ELSE
 IF ((lan .GE. -1.d-9) .AND. (lan .LE. -1.d-9)) THEN !lan=-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0).AND.(nn(h).GT.0.5d0)) THEN
 aux=aux+pHat(h)*LOG((n*pHat(h))/nn(h))
 aux=aux-pr(h)*LOG((n*pr(h))/nn(h))
 ENDIF
 ENDDO
 estT=2.d0*n*aux
 ELSE !lan<>0, lan<>-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0).AND.(nn(h).GT.0.5d0)) THEN
 aux=aux+nn(h)*((nn(h)/(n*pHat(h)))**lan-(nn(h)/(n*pr(h)))**lan)
 ENDIF
 ENDDO
 estT=2.d0*aux/(lan*(1.d0+lan))
ENDIF
ENDIF

END FUNCTION estT

!--
! Subroutine to calculate S-statistic.
!--

FUNCTION estS(lan)
USE ParGlob
IMPLICIT NONE

DOUBLE PRECISION estS, lan, aux, n
INTEGER h

n=SUM(nn)
aux=0.d0
IF ((lan .GE. -1.d-9) .AND. (lan .LE. 1.d-9)) THEN !lan=0
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 aux=aux+pr(h)*LOG(pr(h)/pHat(h))
 ENDIF
 ENDDO
 estS=2.d0*n*aux
 ELSE
 IF ((lan .GE. -1.d-0-1.d-9) .AND. (lan .LE. -1.d0+1.d-9)) THEN !lan=-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 aux=aux+pHat(h)*LOG(pHat(h)/pr(h))
 ENDIF
 ENDDO
 estS=2.d0*n*aux
 ELSE
 IF ((lan .GE. -1.d0-1.d-9) .AND. (lan .LE. -1.d0+1.d-9)) THEN !lan=-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0).AND.(nn(h).GT.0.5d0)) THEN
 aux=aux+pHat(h)*LOG((n*pHat(h))/nn(h))
 aux=aux-pr(h)*LOG((n*pr(h))/nn(h))
 ENDIF
 ENDDO
 estT=2.d0*n*aux
ENDIF
ENDIF
ENDIF

END FUNCTION estS
ELSE

 ! lan<>0, lan<>-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 aux=aux+(pr(h)**(lan+1.d0))/(pHat(h)**lan)
 ENDIF
 ENDDO
 estS=2.d0*n*(aux-1.d0)/(lan*(1.d0+lan))
ENDIF
ENDIF
END FUNCTION estS

!--
! Subroutine to calculate matrix K.
!--

SUBROUTINE KMatrices()
USE ParGlob
IMPLICIT NONE

INTEGER n

k1=0.d0
DO n=1,I-1
 k1(n,n)=(nu(n)+nu(n+1))/(nu(n)*nu(n+1))
 IF (n.GE.2) THEN
 k1(n,n-1)=-1.d0/nu(n)
 ENDIF
 IF (n.LE.I-2) THEN
 k1(n,n+1)=-1.d0/nu(n+1)
 ENDIF
ENDDO

k2=0.d0
DO n=1,J-1
 k2(n,n)=(ppi(n)+ppi(n+1))/(ppi(n)*ppi(n+1))
 IF (n.GE.2) THEN
 k2(n,n-1)=-1.d0/ppi(n)
 ENDIF
 IF (n.LE.J-2) THEN
 k2(n,n+1)=-1.d0/ppi(n+1)
 ENDIF
ENDDO

END SUBROUTINE KMatrices

!--
! Subroutine to calculate matrix H.
!--

END
SUBROUTINE HMatrix()
USE ParGlob
IMPLICIT NONE
CALL Kronecker(I-1,I-1,k1,J-1,J-1,k2,hh)
END SUBROUTINE HMatrix

!--
! Soubrotine to calculate p-values in terms of a specific lambda: T(lam) o S(lam)
!--

FUNCTION pval(est)
USE ParGlob
IMPLICIT NONE

INTEGER n, ifail
DOUBLE PRECISION pval, est, aux, g01ecf

IF (est.LE.0.d0) THEN
aux=1.d0
ELSE
aux=0.d0
DO n=1,(I-1)*(J-1)
 ifail=-1
 aux=aux+g01ecf('U',est,n*1.d0,ifail)*we((I-1)*(J-1)-n)
ENDDO
IF (est.LT.0) THEN
aux=aux+we((I-1)*(J-1))
ENDIF
ENDIF
pval=aux
END FUNCTION pval

C Fortran code: simulation.f95

!--
! This program is only valid for 2 by 3 contingency tables
! (for other sizes some changes must be done:
! change the value of J and follow the formulas of the weights)
! To run it, the NAG library is required to have installed
! The FORTRAN program generates the outputs in several text files
!--

MODULE ParGlob
INTEGER fail
INTEGER, PARAMETER :: I=2, J=3, nrr=25000, nlam=301

42
DOUBLE PRECISION pr(I*J), W(I*J,I*J-1), RR((I-1)*(J-1),I*(J-1)), betatil(I*(J-1)), & pHat(I*J), zz((I-1)*(J-1)), tbt((I-1)*(J-1), (I-1)*(J-1)), bb((I-1)*(J-1), (I-1)*(J-1)),&
we(0:(I-1)*(J-1)), k1((I-1),(I-1)), k2((J-1),(J-1)), hh((I-1)*(J-1), (I-1)*(J-1)), &
hinv((I-1)*(J-1),(I-1)*(J-1)), ntt, nu(I), ppi(J), nn(I*J), ppi(I,J), un,&
sample(nrr,I*J), odds(I-1,J-1), lamb(nlam)

DOUBLE PRECISION, PARAMETER:: nt(I) = (/16.d0,20.d0/), starting=-1.5d0, ending=3.d0, &
del=0.d0, pi=3.14159265358979323846264338327950d0

!if nlam=1, the program only considers the ending
END MODULE ParGlob

!--
PROGRAM simulation
USE ParGlob
IMPLICIT NONE

INTEGER n, m, kk, rep, ifail

DOUBLE PRECISION estT, estS, pval, table(I,J), contT(nlam), contS(nlam), iniTheta(I*J-1),&
marg(J), rank(J), wilc, meanWilc, sdWilc, pValWilc, g01eaf, contW

DO n=1,nlam-1
 lamb(n)=starting+(ending-starting)*(n*1.d0-1.d0)/(nlam*1.d0)
ENDDO
 lamb(nlam)=ending
 contT=0.d0
 contS=0.d0
 contW=0.d0

DO n=1,I
 DO m=1,J
 ppi(n,m)=(1.d0/3.d0)*((1.d0+n*(m-1.d0)*del)/(1.d0+n*del))
 ENDDO
ENDDO

DO n=1,I-1
 DO m=1,J-1
 odds(n,m)=ppi(n,m)*ppi(n+1,m+1)/(ppi(n+1,m)*ppi(n,m+1))
 ENDDO
ENDDO

ntt=SUM(nt)
u=nt/ntt
CALL DesignM()

CALL RestricM()

CALL G05CBF(150)
CALL generaMult()

DO rep=1,nrr
 nn=sample(rep,:)
 DO n=1,I*J
 IF (nn(n).LE.0.d0) THEN
 nn(n)=1.d-5
 END
 ENDDO

CALL DesignM()

CALL RestricM()

CALL G05CBF(150)
CALL generaMult()

DO rep=1,nrr
 nn=sample(rep,:)
 DO n=1,I*J
 IF (nn(n).LE.0.d0) THEN
 nn(n)=1.d-5
 END
 ENDDO

CALL DesignM()

CALL RestricM()
ENDIF
ENDDO
marg=nn(1:J)+nn(J+1:2*J)
rank=0.d0
DO kk=2,J
 rank(kk)=rank(kk-1)+marg(kk-1)
ENDDO
rank=rank+(marg+1.d0)/2.d0
wilc=SUM(rank*nn(1:J))
meanWilc=nt(1)*(nt(1)+nt(2)+1.d0)/2.d0
sdWilc=nt(1)*nt(2)*(nt(1)+nt(2)+1.d0)/12.d0
sdWilc=sdWilc-nt(1)*nt(2)*SUM(marg**3-marg)/(12.d0*(nt(1)+nt(2))*(nt(1)+nt(2)-1.d0))
sdWilc=SQRT(sdWilc)
wilc=(wilc-meanWilc)/sdWilc
ifail=-1
pValWilc=g01eaf('L',wilc,ifail)
table=TRANSPOSE(RESHAPE(nn,(/J,I/)))
DO m=1,J
 ppi(m)=SUM(table(:,m))/ntt
ENDDO
iniTheta=0.d0
CALL emvH01(iniTheta)
IF (fail.NE.0) THEN
 iniTheta=0.1d0
 CALL emvH01(iniTheta)
 IF (fail.NE.0) THEN
 iniTheta=-0.1d0
 CALL emvH01(iniTheta)
 ENDIF
ENDIF
21 FORMAT (20F10.4)
22 FORMAT (20F15.10)
CALL ProbVector2(nu,ppi)
CALL Kmatrices()
CALL hMatrix()
we(2)=ACOS(hh(1,2)/SQRT(hh(1,1)*hh(2,2)))/(2.d0*pi)
we(1)=0.5d0
we(0)=0.5d0-we(2)
IF (pValWilc.LE.0.05d0) THEN
 contW=contW+1.d0
ENDIF
DO n=1,nlam
 IF (pval(estT(lamb(n))).LE.0.05d0) THEN
 contT(n)=contT(n)+1.d0
 ENDIF
 IF (pval(estS(lamb(n))).LE.0.05d0) THEN
 contS(n)=contS(n)+1.d0
 ENDIF
ENDIF
ENDDO
 ENDDO
 OPEN (10, FILE = "SignLevT-2S.DAT", action="write",status="replace")
 WRITE(10,*) " ** significance levels for T-test Statistics ** "
 WRITE(10,*) " --- "
 DO n=1,nlam
 WRITE(10,21) REAL(lamb(n)),REAL(contT(n)/(nrr*1.d0))
 ENDDO
 CLOSE(10)

OPEN (10, FILE = "SignLevS-2S.DAT", action="write",status="replace")
 WRITE(10,*) " ** significance levels for S-test Statistics ** "
 WRITE(10,*) " --- "
 DO n=1,nlam
 WRITE(10,21) REAL(lamb(n)),REAL(contS(n)/(nrr*1.d0))
 ENDDO
 CLOSE(10)

OPEN (10, FILE = "Wilcoxon-2S.DAT", action="write",status="replace")
 WRITE(10,*) " ** significance level for Wilcoxon Statistics ** "
 WRITE(10,*) " --- "
 WRITE(10,*) REAL(contW/(nrr*1.d0))
 CLOSE(10)

END PROGRAM simulation

!--
! This subroutine calculates the design matrix of a saturated log-linear model
! with canonical parametrization
!--
SUBROUTINE DesignM()
USE ParGlob
IMPLICIT NONE
INTEGER h
DOUBLE PRECISION one_I(I), one_J(J), A(I,I-1), B(J,J-1), W12(I*J,(I-1)*(J-1)), &
 W1(I*J,I-1), W2(I*J,J-1)

ONE_I=1.d0
ONE_J=1.d0
A=0.d0
DO h=1,I-1
 A(h,h)=1.d0
 ENDDO
B=0.d0
DO h=1,J-1
 B(h,h)=1.d0
 ENDDO
CALL Kronecker(I,I-1,A,J,1,ONE_J,W1)
CALL Kronecker(I,1,ONE_I,J-1,B,W2)
CALL Kronecker(I,I-1,A,J,J-1,B,W12)

W(:,1:I-1)=W1
W(:,I:I+J-2)=W2
W(:,I+J-1:I*J-1)=W12

END SUBROUTINE DesignM

!--
! This subroutine calculates the restriction matrix
!--
SUBROUTINE RestrictM()
USE ParGlob
IMPLICIT NONE
INTEGER h
DOUBLE PRECISION R2((I-1)*(J-1),J-1), R12((I-1)*(J-1),(I-1)*(J-1)), GI(I-1,I-1), GJ(J-1,J-1)

GI=0.d0
DO h=1,I-1
 GI(h,h)=1.d0
 IF (h.LT.I-1) THEN
 GI(h,h+1)=-1.d0
 ENDIF
ENDDO

GJ=0.d0
DO h=1,J-1
 GJ(h,h)=1.d0
 IF (h.LT.J-1) THEN
 GJ(h,h+1)=-1.d0
 ENDIF
ENDDO

R2 = 0.d0
CALL Kronecker(I-I,1,GJ,J,J-1,GJ,R12)
RR(1:(I-1)*(J-1),1:J-1) = R2
RR(1:(I-1)*(J-1),J:I*(J-1)) = R12

END SUBROUTINE RestrictM

!--
! Given matrices A and B, this subroutine calculates C as the Kronecker product
! A’s dimension n by m
! B’s dimension p by q
SUBROUTINE Kronecker(n,m,A,p,q,B,C)
IMPLICIT NONE

INTEGER n, m, p, q
DOUBLE PRECISION A(n,m), B(p,q), C(n*p,m*q)
INTEGER i, j, k, d

DO i=1,n
 DO j=1,m
 DO k=1,p
 DO d=1,q
 C((i-1)*p+k,(j-1)*q+d) = A(i,j)*B(k,d)
 ENDDO
 ENDDO
 ENDDO
ENDDO
END SUBROUTINE Kronecker

SUBROUTINE ProbVector(beta)
USE ParGlob
IMPLICIT NONE

INTEGER n
DOUBLE PRECISION beta(I*(J-1)), theta(I*J-1), u

theta(I:I*J-1)=beta
u=LOG(nt(I))-LOG(ntt)-LOG(1.d0+SUM(EXP(beta(1:J-1))))

DO n=1,I-1
 theta(n)=LOG(nt(n))-LOG(ntt)-u &
 -LOG(1.d0+SUM(EXP(beta(1:J-1)+beta(n*(J-1)+1:(n+1)*(J-1)))))
ENDDO

pr=EXP(MATMUL(W,theta))*EXP(u)

END SUBROUTINE ProbVector

SUBROUTINE ProbVector2(nnu,pppi)
USE ParGlob

END SUBROUTINE ProbVector2
IMPLICIT NONE

INTEGER h, s
DOUBLE PRECISION nnu(I), pppi(J), aux(I,J)

DO h=1,I
 DO s=1,J
 IF (pppi(s).GT.0.d0) THEN
 aux(h,s)=nnu(h)*pppi(s)
 ELSE
 aux(h,s)=1.d-5
 ENDIF
 ENDDO
ENDDO

!Nuestros vectores est\'{a}n en orden lexicogr\'{a}fico, por eso trasponemos
pHat=reshape(TRANSPOSE(aux),(/I*J/))

END SUBROUTINE ProbVector2

!--
!--
! Subroutine to calculate theta_tilde.
!--
SUBROUTINE emvH01(x)
USE ParGlob
IMPLICIT NONE

INTEGER, PARAMETER:: n = I*J-1, nclin = (I-1)*(J-1), ncnln = 0, lda = nclin
INTEGER, PARAMETER:: ldcj = 1, ldr = n , liw= 3*n+nclin+2*ncnln, lw=530
INTEGER iter, ifail, istate(n+nclin+ncnln), iwork(liw), iuser(1), nstate
DOUBLE PRECISION objf, A(nclin,n), user(1), work(lw), R(ldr,n), C(ncnln), CJAC(ldcj,n)
DOUBLE PRECISION clamda(n+nclin+ncnln), bl(n+nclin+ncnln), bu(n+nclin+ncnln), x(n), &
 objgrd(n)
EXTERNAL confun, e04ucf, e04uef, objfun

A=0.d0
A(:,I:I*J-1)=RR
bl(1:n)=-1.d6
bl(n+1:n+nclin)=0.d0
bu=1.d6
ifail = -1
CALL e04uef ('INFINITE BOUND SIZE = 1.e5')
CALL e04uef ('ITERATION LIMIT = 250')
CALL e04uef ('PRINT LEVEL = 0')
CALL e04ucf(n, nclin, ncnln, lda, ldcj, ldr, A, bl, bu, confun, objfun, iter, istate, C,&
 CJAC, clamda, objf, objgrd, R, x, iwork, liw, work, lw, iuser, user, ifail)
betatil=x(I:I*J-1)
fail=ifail

48
END SUBROUTINE envH01

SUBROUTINE objfun(mode, n, x, objf, objgrd, nstate, iuser, user)
USE ParGlob
IMPLICIT NONE
INTEGER mode, n, iuser(1), nstate
DOUBLE PRECISION objf, objgrd(n), x(n), user(1)

CALL ProbVector(x(I:I*(J-1)))
IF (mode .EQ.0 .OR. mode .EQ.2) THEN
 objf =-SUM(nn*LOG(pr))
ENDIF
IF (mode .EQ.1 .OR. mode .EQ.2) THEN
 objgrd=MATMUL(TRANSPOSE(W),SUM(nn)*pr-nn)
ENDIF
END

SUBROUTINE confun (mode, ncnln, g, ldcj, needc, x, c, cjac, nstate, iuser, user)
INTEGER mode, ncnln, g, ldcj, needc(*), nstate, iuser(*)
DOUBLE PRECISION x(*), c(*), cjac(ldcj,*), user(*)
END

!--
! Subroutine to calculate T-statistic.
!--

FUNCTION estT(lan)
USE ParGlob
IMPLICIT NONE

DOUBLE PRECISION estT, lan, aux, n
INTEGER h

n=SUM(nn)
aux=0.d0
IF ((lan .GE. -1.d-9) .AND. (lan .LE. 1.d-9)) THEN !lan=0
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0).AND.(nn(h).GT.0.d0)) THEN
 aux=aux+nn(h)*LOG(pr(h)/pHat(h))
 ENDIF
 ENDDO
 estT=2.d0*aux
ELSE
 IF ((lan .GE. -1.d-9-1.d-9) .AND. (lan .LE. -1.d-9+1.d-9)) THEN !lan=-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0).AND.(nn(h).GT.0.5d0)) THEN
 ENDIF
 ENDDO
 estT=2.d0*aux
 ELSE
 IF ((lan .GE. -1.d0-1.d-9) .AND. (lan .LE. -1.d0+1.d-9)) THEN !lan=-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0).AND.(nn(h).GT.0.5d0)) THEN
 ENDIF
 ENDDO
 estT=2.d0*aux
 ELSE
 estT=2.d0*aux
 ENDIF
 ENDIF
 ENDIF
 ELSE
 estT=2.d0*aux
 ENDIF
END
aux=aux+pHat(h)*LOG((n*pHat(h))/nn(h))
aux=aux-pr(h)*LOG((n*pr(h))/nn(h))
ENDIF
ENDDO
estT=2.d0*n*aux
ELSE !lan<>0, lan<>-1
DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0).AND.(nn(h).GT.0.5d0)) THEN
 aux=aux+nn(h)*((nn(h)/(n*pHat(h)))**lan-(nn(h)/(n*pr(h)))**lan)
 ENDIF
ENDDO
estT=2.d0*aux/(lan*(1.d0+lan))
ENDIF
ENDIF
END FUNCTION estT

!---
! Subroutine to calculate S-statistic.
!---

FUNCTION estS(lan)
USE ParGlob
IMPLICIT NONE

DOUBLE PRECISION estS, lan, aux, n
INTEGER h

n=SUM(nn)
aux=0.d0
IF ((lan .GE. -1.d-9) .AND. (lan .LE. 1.d-9)) THEN !lan=0
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 aux=aux+pr(h)*LOG(pr(h)/pHat(h))
 ENDIF
 ENDDO
 estS=2.d0*n*aux
ELSE
 IF ((lan .GE. -1.d0-1.d-9) .AND. (lan .LE. -1.d0+1.d-9)) THEN !lan=-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 aux=aux+pHat(h)*LOG(pHat(h)/pr(h))
 ENDIF
 ENDDO
 estS=2.d0*n*aux
 ELSE !lan<>0, lan<>-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 ENDIF
 ENDDO
 estS=2.d0*n*aux
 ELSE !lan<>0, lan<>-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 ENDIF
 ENDDO
 estS=2.d0*n*aux
 ELSE !lan<>0, lan<>-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 ENDIF
 ENDDO
 estS=2.d0*n*aux
 ELSE !lan<>0, lan<>-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 ENDIF
 ENDDO
 estS=2.d0*n*aux
 ELSE !lan<>0, lan<>-1
 DO h=1,I*J
 IF ((pr(h).GT.0.d0).AND.(pHat(h).GT.0.d0)) THEN
 ENDIF
 ENDDO
 estS=2.d0*n*aux
 ENDIF
END FUNCTION estS
aux=aux+(pr(h)**(lan+1.d0))/(pHat(h)**lan)
ENDIF
ENDDO
estS=2.d0*n*(aux-1.d0)/(lan*(1.d0+lan))
ENDIF
ENDIF
END FUNCTION estS

!--
! Subroutine to calculate matrix K.
!--
SUBROUTINE KMatrices()
USE ParGlob
IMPLICIT NONE

INTEGER n
k1=0.d0
DO n=1,I-1
 k1(n,n)=(nu(n)+nu(n+1))/(nu(n)*nu(n+1))
 IF (n.GE.2) THEN
 k1(n,n-1)=-1.d0/nu(n)
 ENDIF
 IF (n.LE.I-2) THEN
 k1(n,n+1)=-1.d0/nu(n+1)
 ENDIF
ENDDO

k2=0.d0
DO n=1,J-1
 k2(n,n)=(ppi(n)+ppi(n+1))/(ppi(n)*ppi(n+1))
 IF (n.GE.2) THEN
 k2(n,n-1)=-1.d0/ppi(n)
 ENDIF
 IF (n.LE.J-2) THEN
 k2(n,n+1)=-1.d0/ppi(n+1)
 ENDIF
ENDDO

END SUBROUTINE KMatrices

!--
! Subroutine to calculate matrix H.
!--
SUBROUTINE HMatrix()
USE ParGlob
IMPLICIT NONE

END SUBROUTINE HMatrix
CALL Kronecker(I-1,I-1,k1,J-1,J-1,k2,hh)
END SUBROUTINE HMatrix

! Soubrotine to calculate p-values in terms of a specific lambda: T(lam) o S(lam)

FUNCTION pval(est)
USE ParGlob
IMPLICIT NONE

INTEGER n, ifail
DOUBLE PRECISION pval, est, aux, g01ecf

IF (est.LE.0.d0) THEN
aux=1.d0
ELSE
aux=0.d0
DO n=1,(I-1)*(J-1)
 ifail=-1
 aux=aux+g01ecf('U',est,n*1.d0,ifail)*we((I-1)*(J-1)-n)
ENDDO
IF (est.LT.0) THEN
 aux=aux+we((I-1)*(J-1))
ENDIF
ENDIF

pval=aux

END FUNCTION pval

SUBROUTINE generaMult()
USE ParGlob
IMPLICIT NONE

INTEGER n, m, h, s
DOUBLE PRECISION c(I,0:J)
REAL G05CAF

C=0.d0
sample=0.d0
DO n=1,I
 DO h=1,J
 c(n,h)=c(n,h-1)+ppit(n,h)
 ENDDO
ENDDO
ENDDO
DO s=1,nrr
 DO n=1,I
 DO m=1,INT(nt(n))
 un=G05CAF(un)
 h=1
 DOWHILE (.NOT.((un.GE.c(n,h-1)).AND.(un.LT.c(n,h))))
 h=h+1
 ENDDO
 sample(s,(n-1)*J+h)=sample(s,(n-1)*J+h)+1.d0
 ENDDO
 ENDDO
ENDDO
ENDDO

END SUBROUTINE