Universidad Complutense de Madrid
E-Prints Complutense

Elliptic problems on the space of weighted with the distance to the boundary integrable functions revisited

Impacto

Descargas

Último año



Díaz Díaz, Jesús Ildefonso y Rakotoson, Jean-Michel (2014) Elliptic problems on the space of weighted with the distance to the boundary integrable functions revisited. Electronic Journal of Differential Equations, Conference, 21 . pp. 45-59. ISSN 1072-6691

[img]
Vista previa
PDF
293kB

URL Oficial: http://ejde.math.txstate.edu/Volumes/2014/90/begout.pdf



Resumen

We revisit the regularity of very weak solution to second-order elliptic equations Lu = f in Ω with u = 0 on ∂Ω for f ∈ L1 (Ω, δ), δ(x) the distance to the boundary ∂Ω. While doing this, we extend our previous results(and many others in the literature)by allowing the presence of distributions f+g which are more general than Radon measures (more precisely with g in the dual of suitable Lorentz-Sobolev spaces) and by making weaker assumptions on the coefficients of L. One of the new tools is a Hardy type inequality developed recently by the second author. Applications to the study of the gradient of solutions of some singular semilinear equations are also given.


Tipo de documento:Artículo
Información Adicional:

Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems (2012). Electronic Journal of Differential Equations, Conference 21 (2014),

Palabras clave:Very weak solutions; semilinear elliptic equations; distance to the boundary; weighted spaces measure; Hardy inequalities; Hardy spaces
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:29595
Depositado:16 Abr 2015 08:56
Última Modificación:17 Abr 2015 08:23

Descargas en el último año

Sólo personal del repositorio: página de control del artículo