Magnetism and superconductivity in La$_{0.7}$Ca$_{0.3}$MnO$_3$/YBa$_2$Cu$_3$O$_7$–δ superlattices

P. Prieto, P. Vivas, G. Campillo, E. Baca, and L. F. Castro
Departamento de Fisica, Universidad del Valle A. A., 25360 Cali, Colombia

M. Varela and C. Ballesteros
Departamento de Fisica, Universidad Carlos III de Madrid, Leganés 28911 Madrid, Spain

J. E. Villegas
Departamento de Física de los Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain

D. Arias,a C. León, and J. Santamaríab
GFMC, Departamento de Física Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain

(Received 20 October 2000; accepted for publication 15 March 2001)

We report on the magnetic and superconducting properties of La$_{0.7}$Ca$_{0.3}$MnO$_3$/YBa$_2$Cu$_3$O$_7$ (LCMO/YBCO) superlattices. For a constant LCMO layer thickness of 6 unit cells (u.c.), resistance and susceptibility measurements show superconductivity for YBCO layer thickness in excess of 4 unit cells. The critical temperature increases with YBCO thickness, and a T_c of 58 K is found for a YBCO thickness of 10 unit cells. Magnetization measurements show a ferromagnetic transition at 100 K in a (LCMO$_6$ u.c./YBCO$_5$ u.c.)$_{15}$ bilayer superlattice, and a depressed value of the saturation magnetization of 20 emu cm$^{-2}$. These results are discussed in terms of interface disorder (analyzed by x-ray diffraction and transmission electron microscopy) and of the possible interaction between magnetism and superconductivity. © 2001 American Institute of Physics.

[DOI: 10.1063/1.1370994]

I. INTRODUCTION

Manganites with perovskite structure have been the focus of great interest in recent years due to its interesting magnetotransport properties and colossal magnetoresistance (CMR).$^{1-5}$ The oxide perovskite structure with pseudocubic lattice parameter of 0.386 nm of the La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO) compound is quite adequate for the growth of heterostructures with high T_c superconducting cuprates, in particular YBa$_2$Cu$_3$O$_7$ (YBCO). This is interesting for both fundamental and applied studies. On one hand, this is an adequate system to study the interaction between magnetism and superconductivity, and the growth of heterostructures may be interesting for further understanding of tunneling phenomena; on the other hand, it opens new paths for the development of new tunneling magnetoresistance devices.

In this work we report on the in situ growth of (LCMO/YBCO) superlattices by high oxygen pressure dc sputtering on (001) SrTiO$_3$ substrates. This technique combines high pressure gas atmosphere with high substrate temperature to yield low deposition rates (0.2 Å/s), producing a very thermalized and ordered growth. We have previously shown the ability of this technique to growth epitaxial high T_c superlattices and trilayer tunnel junctions with YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) or Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ electrodes with sharp interfaces and a high degree of structural perfection.$^6,^7$ For the purpose of this study we have fixed the LCMO thickness at 6 unit cells (u.c.), and varied the YBCO thickness between 3 and 10 u.c. The structure is analyzed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). We show the presence of magnetism and superconductivity, although there is a depression both of the critical temperature of the superconductor and of the ferromagnetic transition temperature of the manganite.

II. EXPERIMENT

Superlattices were produced in situ by sequential deposition of the films using a multtarget dc-sputtering system at high oxygen pressure on (100) SrTiO$_3$ (STO) single crystal substrates. Stoichiometric sintered YBa$_2$Cu$_3$O$_{7-\delta}$ and La$_{0.67}$Ca$_{0.33}$MnO$_3$–δ sputtering targets of 35 mm diameter were used. Pure oxygen at a pressure of 3.8 mbar was used as the sputtering gas, and a potential difference of 240 V with a current of 100 mA was applied between the electrodes. The substrate heater temperature was held at $T_H = 900^\circ$C during deposition. The structure was analyzed with high angle XRD using CuKα radiation. The roughness of the individual layers was obtained by refinement using the SUPREX software.8 TEM analysis was carried out using a JEOL 4000EX microscope operated at 400 kV. Cross-sectional samples for TEM were prepared by conventional mechanical grinding, dimpling, and argon ion milling with an acceleration voltage of 5 kV and an incidence angle of 8°. Magnetotransport measurements were conducted in a He cryostat with a 8 T superconducting magnet, and magnetization was analyzed using a superconducting quantum interference device (SQUID) magnetometer (Quantum Design).

aOn leave from Universidad del Quindio, Armenia, Colombia.
bCorresponding author; electronic mail: jacsan@eucmax.sim.ucm.es
This deposition procedure consistently produces epitaxial YBa$_2$Cu$_3$O$_7$ and La$_{0.67}$Ca$_{0.33}$MnO$_3$ thin films with good structural properties as proven by several analytical techniques such as XRD, TEM, and atomic force microscopy (AFM) analysis. We optimized the growth conditions to produce single films with optimal properties for both materials. YBCO films had critical temperatures in excess of 90 K with a wide transition of 0.1 K, and showed good epitaxial properties. Details on the quality of YBa$_2$Cu$_3$O$_7$ films have been reported elsewhere. LCMO films also grew epitaxially, with a metal–insulator transition of $T_{M-I} = 282$ K, a Curie temperature of $T_c = 270$ K, and a saturation magnetization of 400 emu/cm3 at 10 K.

III. RESULTS AND DISCUSSION

Figure 1 shows a typical high angle XRD pattern of a (LCMO_{6 u.c.}/YBCO_{5 u.c.})$_{15}$ superlattice. Since the pseudocubic lattice parameter of the manganite is about one third of the c lattice parameter of the YBCO superlattice, Bragg peaks nearly occur at Bragg peaks of the individual layers. Sharp superlattice satellites can be seen around the manganite peaks yielding a modulation length of 7 nm for the superlattice. Superlattice peaks are marked with vertical dashed lines in Fig. 1. The YBCO peaks, on the other hand, are wide, reflecting a significant amount of roughness in the manganite layer breaking the coherence between the YBCO layers. Simulations of the XRD pattern using the SUPREX software yielded a roughness of two manganite unit cells high ($4–8$ Å). Such observations also confirmed the coherent character of interfaces, provided the small in plane lattice mismatch between YBCO and LCMO, i.e., at the short length scales probed by HREM the interfaces are atomically flat (between steps). It is important to remark that, from the two structural probes used in this study (XRD and TEM), we cannot definitely exclude chemical interdiffusion between both layers. Refined x-ray patterns accounted reasonably well for experimental data without the presence of interdiffusion, although 10% interdiffusion in the interface layer did not produce significant changes in the confidence factor of the fit (χ^2).

Samples were superconducting (established from resistivity and from mutual inductance measurements) for YBCO thickness larger than 4 unit cells [([LCMO_{6 u.c.}/YBCO_{5 u.c.})$_{15}$, with $N > 4$]. Figure 3 displays the resistance curves of a (LCMO_{6 u.c.}/YBCO_{10 u.c.})$_{15}$ superlattice showing a zero resistance.

Over the interfaces are not perfectly flat, showing clear layer thickness fluctuations at long length scales (hundreds of ångströms). High magnification images (not shown) confirm the presence of interface steps of one or two manganite unit cells high (4–8 Å). Such observations also confirmed the coherent character of interfaces, provided the small in plane lattice mismatch between YBCO and LCMO, i.e., at the short length scales probed by HREM the interfaces are atomically flat (between steps). It is important to remark that, from the two structural probes used in this study (XRD and TEM), we cannot definitely exclude chemical interdiffusion between both layers. Refined x-ray patterns accounted reasonably well for experimental data without the presence of interdiffusion, although 10% interdiffusion in the interface layer did not produce significant changes in the confidence factor of the fit (χ^2).
transition temperature of 20 K, and of a [LCMO₆/YBCO₁₀]₁₅ sample with a <i>T</i>_c of 58 K. The resistance curves did not show the “bump” characteristic of the metal–insulator transition at the ferromagnetic transition. This reflects that the manganite layer shows enhanced resistivity due to interface disorder, and that current flows through the YBCO layers. This effect is observed in YBCO/PBCO superlattices, in which current basically flows through YBCO layers below 250 K.⁶ This is not completely unexpected in our superlattices, since an increase of the low temperature resistivity has been observed previously in strained layers grown on LaAlO₃ and NdGaO₃.⁷ In fact, samples with a YBCO thickness smaller than 4 unit cells [(LCMO₆/YBCO₃)₁₅, with N<4] were insulating and showed much higher values of the normal state resistivity (200 Ω at room temperature). Interestingly, resistance curves of the (LCMO₆/YBCO₃)₁₅ superlattices do not show transition broadening upon the application of a magnetic field up to 4 T parallel to the substrate (dashed line in Fig. 3). This has been previously observed in two-dimensional (2D) like, 1 unit cell YBCO thick layers in YBCO/PBCO superlattices with spacer thickness in excess of 5 unit cells, and results from the decoupling of CuO plane blocks by the thick PBCO layers.^{5,10} In our case, this behavior could arise from the suppression of superconductivity down to a thickness comparable with one unit cell.

Measurements of the sample magnetic moment as a function temperature (see Fig. 4) show a clear ferromagnetic transition at about 100 K. At lower temperatures (below 50 K), the signature of the diamagnetic response of the YBCO layers shows up, reducing the total magnetic moment of the sample, which becomes negative at lower temperatures. Magnetization loops at 50 K (above the superconducting transition temperature) show a clear, but small, magnetic moment, and a saturation field of 2 kOe (see the inset in Fig. 4). The saturation magnetization, <i>M</i>_s, obtained from the hysteresis loops was 20 emu cm⁻³ on the basis of 15 LCMO layers each 6 unit cells thick. This value is much lower than the one found in single films (400 emu cm⁻³ at 10 K). This can partly arise from the high temperature of the measurement in relation to the ferromagnetic transition temperature.

Additionally, reduced ferromagnetic transition temperatures and small values of the magnetic moment have been previously observed in single layers and LCMO/STO superlattices,¹¹ and are explained in terms of epitaxial strain and/or dead layers arising from surface or interface disorder.^{9,12,13} In fact, in view of the 2 unit cell roughness obtained from x-ray analysis substantial layer thickness fluctuation can cause local changes of the magnetic moment. This points to the value of 20 emu cm⁻³ being somewhat underestimated. Additionally, although single films showed optimum in situ oxygenation, with ferromagnetic transition temperatures close to 300 K, there is the possibility of deficient oxygenation of the superlattices due to the layered nature of the samples. Finally, we cannot exclude the magnetism being depressed by the presence of the superconducting layer. In fact a depression of the magnetic properties due to the presence of superconducting layers has been previously reported in metallic superlattices.^{14,15}

A last remark with regard to the low value of the superconducting critical temperature. X-ray analysis with the SUREX software showed roughness values (layer thickness fluctuation) of the YBCO layers of 0.8 unit cells. Even if we assume that one complete unit cell at the interface would not be superconducting, the critical temperature of (LCMO₆/YBCO₃)₁₅ superlattices is still too low (20 K) compared, for example, with YBCO/PBCO superlattices. We have previously shown that 3 unit cell YBCO layers in YBCO/PBCO superlattices have a <i>T</i>_c in excess of 70 K.⁶ Moreover, the <i>T</i>_c of 58 K of a (LCMO₆/YBCO₁₀)₁₅ sample can hardly be explained in terms of interface properties. However, we cannot exclude deficient oxygenation of the layers to some extent limited by slower oxygenation dynamics of the manganite layers (a <i>T</i>_c of 58 K would correspond to an oxygen content of 6.6 per formula for single films). Another interesting possibility is that the reduced <i>T</i>_c in our magnetic/superconducting multilayers might also be a fingerprint of the suppression of the superconductivity by the magnetic layers in this system.^{14,15}

IV. CONCLUSIONS

In summary, we have presented artificially layered materials, showing magnetism and superconductivity. The superconducting and ferromagnetic critical temperatures are depressed. Further work is necessary to clarify to what extent this depression arises from interface disorder and deficient oxygenation or from the interaction between magnetism and superconductivity.

Financial support from COLCIENCIAS, Colombia, is acknowledged. Four of the authors (M.V., C.B., D.A., and J.S.) are grateful for CICYT Grant No. MAT99-1706 E. another author (J.E.V.) thanks Comunidad de Madrid for a fellowship and CICYT Grant No. MAT 99-0724 for financial support. The authors thank Kai Lu, Chris Leighton, and Ivan K. Schuller for helpful conversations and assistance with the magnetic measurements. They thank J. L. Vicent for critical reading of the manuscript.