Properties of low-lying intruder states in 34Al and 34Si populated in the beta-decay of 34Mg

Citation: AIP Conference Proceedings 1645, 363 (2015); doi: 10.1063/1.4909602
View online: http://dx.doi.org/10.1063/1.4909602
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1645?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in
Low-lying isomeric state in 80Ga from the β^- decay of 80Zn

Beyond low beta-decay Q values
AIP Conf. Proc. 1304, 401 (2010); 10.1063/1.3527233

Bound state beta-decay and its astrophysical relevance

Properties of low-lying states in 134Cs

Atomic Excitation in Beta-Decay
J. Chem. Phys. 21, 45 (1953); 10.1063/1.1698620
Properties of low-lying intruder states in 34Al and 34Si populated in the beta-decay of 34Mg

* “Horia Hulubei” National Institute for Physics and Nuclear Engineering, IFIN-HH, P.O.B. MG-6, 077125 Magurele, Romania
† ISOLDE/CERN, Geneva, Switzerland
‡ CENBG, Université de Bordeaux, CNRS/IN2P3, Chemin du Solarium, 33175 Gradignan Cedex, France
§ IPHC, Université de Strasbourg, IN2P3/CNRS; BP28, F-67037 Strasbourg Cedex, France
¶ Institute of Nuclear Research, H-4001 Debrecen, Pf.51, Hungary
∥ Grupo de Física Nuclear, Facultad de CC. Físicas, Universidad Complutense, Madrid, Spain
†† IPNO, Université Paris-Sud 11, CNRS/IN2P3, Orsay, France
‡‡ NPI, Nuclear Physics Institute, AS CR, CZ-25068 Rez, Czech Republic
§§ INFN - Sezione di Padova, Italy

Abstract.

The results of the IS530 experiment at ISOLDE revealed new information concerning several nuclei close to the $N \approx 20$ 'Island of Inversion' - 34Mg, 34Al, 34Si. The half-life of 34Mg was found to be three times larger than the adopted value (63(1) ms instead of 20(10) ms). The beta-gamma spectroscopy of 34Mg performed for the first time in this experiment, led to the first experimental level scheme for 34Al, also showing that the full beta strength goes through the predicted 1^+ isomer in 34Al [1] and/or excited states that deexcite to it. The subsequent beta-decay of the 1^+ isomer in 34Al allowed the observation of new gamma lines in 34Si, (tentatively) associated with low-spin high-energy excited states previously unobserved.

Keywords: HPGe, LaBr3(Ce) detectors, plastic scintillator, 34Mg, 34Al, 34Si, β^- decay, measured $\gamma-\gamma$ coincidences, deduced level scheme.

PACS: 21.10.Tg, 23.20.Lv, 23.40.-s, 27.30.+t

1. INTRODUCTION

More than three decades after the first clues [2, 3] to the existence of a region of deformation and/or shape coexistence around $N = 20$ - the "Island of Inversion" - there are nuclei in its vicinity for which the experimental information is scarce. Such an example is the heaviest nucleus inside this 'island' - 34Mg, whose first beta-gamma spectroscopy was performed in our recent experiment at ISOLDE [4]. The daughter nucleus - 34Al - had no experimental level scheme, though some transitions were assigned to this nucleus [5, 6]. Moreover a low spin beta-isomer of unknown excitation energy was evidenced at GANIL [1], presumably the 1^+ state of $1\hbar\omega$ configuration [4, 7], populating strongly the deformed 0^+_2 isomer in 34Si of intruder origin.

2. EXPERIMENT

The β^- decay spectroscopy of 34Mg was performed at the ISOLDE facility at CERN. The 34Mg isotopes were produced by the CERN Proton Synchrotron Booster (PSB) 1.2-GeV proton-beam which induced spallation in a thick uranium carbide (UCx) target. The reaction products were extracted and 34Mg was selected using the high resolution mass separator (HRS) and resonant laser ionization (RILIS). During the experiment, an yield of ~ 600 34Mg atoms per proton pulse was obtained, leading to an average of ~ 200 implanted 34Mg per second.
FIGURE 1. Level scheme of 34Al following the β-decay of 34Mg.

The detection system consisted of beta and gamma detectors in order to provide an unique selection of β-γ coincidences and neutron detectors to select β-n and β-2n decay channels. There were three HPGe clover detectors, one HPGe coaxial detector, five LaBr$_3$:Ce crystals which were used as fast-timing γ detectors and three NE213 liquid scintillators as neutron detectors.

A NE102 plastic scintillator was used as a β trigger of $\sim 90\%$ efficiency. This detector had a complex geometry that was designed to comply with several criteria. First of all, in order to maximize the beta efficiency, the implantation tape (of the fast-tape station) passed through a slit in the middle of the scintillator, a hole through one of the faces allowing the implantation of the beam into the foil. A second constraint was related to the thickness of the plastic that needed to be reduced in order to diminish the effect on the low energy γ efficiency.

3. EXPERIMENTAL RESULTS

The γ spectrum following the β-decay of 34Mg and $\gamma-\gamma$ coincidence analysis led to the preliminary 34Al level scheme built on top of the 1$^+$ isomer, displayed in Fig. 1. None of the 22 gamma transitions from 34Al observed in this experiment are found among the previously reported lines of 34Al (388, 433, 597, 706, 916 and 1206 keV from [5], and 657 keV from [6]). The direct γ transition 1$^+ \to 4^-$ was not observed, most likely as a result of an excitation energy significantly smaller than the 550-keV value predicted by the shell-model calculations in [1], thus leading to a very small γ branch from the 1$^+$ β-isomeric state. Also, none of the observed transitions could be connected to the 4$^-$ ground state of 34Al, inferring that it is not significantly fed in the β-decay of 34Mg.

The β-decay half-life of 34Mg was determined using the γ-gated β-time with respect to the proton pulse leading to $T_{1/2} = 63(1)$ ms, three times larger than the previously measured value determined from β-n coincidences [8]. This new value is also confirmed by the β time gated using known γ transitions in 33Al (populated in the β-n decay of 34Mg).

The subsequent β-decay of 34Al revealed several new γ transitions in 34Si, $\gamma-\gamma$ coincidences leading to the decay scheme depicted in Fig. 2. The newly reported lines are in coincidence with the previously known transitions from the
beta-decay of the ^{34}Al 4^- ground state [9]. The 5.3 MeV transition seen in [10, 11] from the supposed second 2^+ to the ground state was not observed.

The absence of gammas that were previously shown to be fed in the β-decay of the ^{34}Al 4^- ground state [9], such as the 124-keV line, is a strong indication that it is not populated (directly or indirectly) in the beta-decay of ^{34}Mg (despite a large number of excited states found in ^{34}Al that could have a γ branch to the 4^- ground state). This is another evidence to support the scenario presented in Fig. 1, showing that none of the detected gammas in ^{34}Al feed the 4 ground state.

In order to extract the β-decay half-life for ^{34}Al, the β-time with respect to the proton bunch was gated using γ lines of ^{34}Si. The resulting time spectrum was fitted with a convolution of two decay components: one having the known ^{34}Mg half-life of $63(1)$ ms as a fixed parameter, and the second one with a free parameter corresponding to the ^{34}Al decay-time. The resulting $T_{1/2} = 25(4)$ ms is in good agreement with the previously measured value [1]. It also confirms the idea that the 4 ground state of ^{34}Al is not populated in the β-decay of ^{34}Mg.

A fast digitizer (1 GHz) was used to acquire traces from the plastic scintillator and recorded 'double hit' type of events corresponding to a beta electron followed by an electron-positron pair (generated in the E0 decay) from the 0^+ isomer in ^{34}Si [1]. Such events were accumulated with enough statistics, enabling the measurement of a 20(2) ns half-life for the first excited state in ^{34}Si as shown in Fig. 3. This result is in agreement with the value determined in [1].

4. CONCLUSIONS

The present study brings new information concerning the decay of ^{34}Mg. Its half-life was found to be three times larger than the adopted value. The first experimental level scheme of ^{34}Al is proposed, containing 22 transitions that
FIGURE 3. Digitized trace from the plastic detector for a 'double hit' type of event. The inset is the time spectrum resulting from the analysis of such traces, leading to a 20(2) ns half-life for the 0^+_2 in ^{34}Si
deexcite to the the 1^+_2 isomer evidenced in [1]. The beta-decay of the 1^+_2 isomer in ^{34}Al allowed the observation of new gamma lines in ^{34}Si. No β or γ branching was observed to populate the 4^- final state, previously assumed the ground state of ^{34}Al. Therefore, the question remains open, whether the 1^+_2 or the 4^- is the ground state of ^{34}Al.

REFERENCES

4. F. Negoita et al., INTC-P-314 (2011)