\(\phi^4 \) theory in \(1+d \) dimensions at high temperature: Dimensional reduction

R. F. Alvarez-Estrada

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 15 December 1986)

The \(\phi^4 \) theory in \(1+d \) dimensions is analyzed at high temperatures in the imaginary-time formalism. General results are given for the leading high-temperature contributions to all renormalized Green's functions. The latter are generated by a high-temperature partition function which describes another \(\phi^4 \) theory in \(d \) spatial dimensions with special mass renormalizations. The triviality/nontriviality of the \((\phi^4)_{1+3} \) theory is discussed briefly.

I. INTRODUCTION

It has been suggested that quantum field theories could become simpler (dimensionally reduced) at high temperatures, \(^1\) which would be a variant of the Appelquist-Carazzone theorem. \(^2\) Recently, that simplification for quantum electrodynamics in two spatial dimensions has been established to all perturbative orders. \(^3\) It would be interesting to provide detailed proofs of high-temperature dimensional reduction for other theories. The main purpose of this work will be to establish it for the \(\phi^4 \) theory in \(1+d \) dimensions. The results are stated in Secs. II and IV, while the proofs are outlined in Sec. III. We shall also discuss in Sec. IV the triviality/nontriviality of the \((\phi^4)_{1+3} \) theory.

II. GENERAL FRAMEWORK AND HIGH-TEMPERATURE RESULTS FOR \((\phi^4)_{1+3} \) THEORY

First, we consider a quantized real scalar Bose (renormalized) field \(\phi \), in \(d=3 \) spatial dimensions with quartic coupling and renormalized mass \(m \geq 0 \) and coupling constant \(\lambda \) in thermodynamical equilibrium at finite temperature \(\beta^{-1} \). In the imaginary-time \((\tau, -\beta/2 \leq \tau \leq +\beta/2) \) formalism, \(^4\) the partition function including an external source \(J(\tau x) \) reads

\[
Z[J] = N \int [D\phi] \exp \left[-S + \int_{-\beta/2}^{+\beta/2} d\tau \int d^d x J(\tau x) \phi(\tau x) \right]
\]

\[
= N \exp \left[\sum_{n=2}^{+\infty} \frac{1}{n!} \int \left[\prod_{n=1}^{n} d\tau_n d^d x_n J(\tau_n x_n) \right] \Delta_n(\tau_1 x_1 \cdots \tau_n x_n) \right],
\]

\[S = \int_{-\beta/2}^{+\beta/2} d\tau \int d^d x \left[\frac{\partial \phi}{\partial \tau} \right]^2 + (\nabla \phi)^2 + \frac{1}{2} (m^2 + \delta m^2) \phi^2 + \frac{\lambda}{4!} Z_{\phi} \phi^4 \].

The finite-temperature renormalized connected Green's functions are

\[
\Delta_n(\tau_1 x_1 \cdots \tau_n x_n) = \beta^{-n+1} \sum_{r_1 = -\infty}^{+\infty} \cdots \sum_{r_n = -\infty}^{+\infty} \int \left[\prod_{h=1}^{n-1} d^d K_h \right] \tilde{\Delta}_n(K_1 \cdots K_n) \]

\[\times \exp \left[i \sum_{j=1}^{n-1} [K_j \cdot (x_j - x_j) - \omega(r_j) (\tau_j - \tau_j)] \right], \sum_{j=1} K_j = 0 \],

\[K_j = (io \omega(r_j), K_j), \quad \omega(r_j) = \beta^{-1} 2\pi r_j, \quad r_j = 0, \pm 1, \pm 2, \ldots \].

\(\delta m^2, Z_{\phi}, \) and \(Z_{\phi} \) are the standard mass renormalization counterterm and the renormalization constants, respectively, associated with the field strength and the coupling constant, all at zero temperature. \(^5\) They suffice to render all \(\tilde{\Delta}_n \)'s ultraviolet convergent at any finite temperature in perturbation theory. \(^6\)

Next, we consider the following partition function \(Z[J]_{\text{pert}} \) depending on a \(\tau \)-independent real scalar field \(\phi(x) \) and external source \(J(x) \) and connected Green's functions \(\Delta_n(x_1 \cdots x_n)_{\text{pert}} \) in three spatial dimensions \((m \geq 0) \):
\[Z[J]_{\text{HT}} = N \int [d\phi] \exp \left\{ -\beta S_{\text{HT}} + \beta \int d^4x j(x) \phi(x) \right\} \]
\[= N \exp \left\{ \sum_{n=2}^{+\infty} \frac{1}{n!} \int \prod_{k=1}^{n} d^4x_k j(x_k) \beta^{n-2} \Delta_n(x_1, \ldots, x_n)_{\text{HT}} \right\}, \] (2.5)
\[S_{\text{HT}} = \int d^4x \left\{ \frac{1}{2} \left[\nabla \phi(x) \right]^2 + \frac{1}{2} (m^2 + \delta m_{\text{HT}}^2) \phi(x)^2 + \frac{\lambda}{4!} \phi(x)^4 \right\}, \] (2.6)
\[\Delta_n(x_1, \ldots, x_n)_{\text{HT}} = \int \prod_{k=1}^{n} \left[\frac{d^4K_k}{(2\pi)^4} \right] \Delta_n(K_1, \ldots, K_n)_{\text{HT}} \exp \left\{ i \sum_{j=1}^{n-1} K_j \cdot (x_j - x_n) \right\}, \] (2.7)

\[[d\phi] = \prod_{x} d\phi(x), \] where \(m \) and \(\lambda \) are the same zero-temperature renormalized quantities as in (2.2). The subscript HT means "high temperature." We suppose that \([v(k)] = (m^2 + k^2)^{1/2} \) \[\delta m_{\text{HT}}^2 = \delta m_{\text{HT},1}^2(a) - \delta m_{\text{HT},2}^2(a) - \delta m_{\text{HT},1}^2(b) + \delta m_{\text{HT},2}^2(b), \] (2.8)
\[\delta m_{\text{HT},1}^2(a) = \frac{\lambda}{2} \int \frac{d^3K}{(2\pi)^3} \times \left[\frac{[\exp[\beta v(K)]] - 1}{[\beta v(K)]^{-1}}, j = 1, \right], \] (2.9)
\[\delta m_{\text{HT},2}^2(b) = \frac{\lambda}{2} \int \frac{d^3K_1 d^3K_2}{(2\pi)^6} \times \left[\frac{[\exp[\beta v(K_1 + K_2)]] - 1}{[\beta v(K_1 + K_2)]^{-1}}, j = 2, \right]. \] (2.10)
\[F(K_1, K_2, K) = \lim_{\epsilon \to 0^+} \prod_{j=1}^{2} \left[\int_{-i\omega_j - \epsilon}^{+i\omega_j + \epsilon} \frac{d\omega_j}{2\pi i} \left[\exp(\beta \omega_j) - 1 \right]^{-1} \right] \times \frac{1}{(\omega_1^2 - \nu(K_j)^2) \left[(\omega_1 + \omega_2)^2 - \nu(K_1 + K_2)^2 \right]^{-1}}. \] (2.11)

The origin of \(\delta m_{\text{HT}}^2 \) lies in the four-dimensional theory (2.1) and (2.2) while \(\delta m_{\text{HT},1}^2(a) \) and \(\delta m_{\text{HT},2}^2(b) \) are, respectively, associated to the Feynman diagrams in Figs. 1(a) and 1(b) (see Sec. III). Notice that \(\delta m_{\text{HT},1}^2(a), \delta m_{\text{HT},1}^2(b) \) are ultraviolet convergent while \(\delta m_{\text{HT},2}^2(a), \delta m_{\text{HT},2}^2(b) \) are divergent. For given \(\beta \), \(Z[J]_{\text{HT}} \) describes a superrenormalizable \((\phi^4)_3\) theory. In fact, in \(d = 3 \), the only Feynman diagrams which are ultraviolet divergent are the ones given in Figs. 1(a) and 1(b) and those which contain the latter as subdiagrams. Those ultraviolet divergences are canceled, respectively, by \(\delta m_{\text{HT},2}^2(a) \) and \(\delta m_{\text{HT},2}^2(b) \). Thus, all \(\Delta_n(K_1, \ldots, K_n)_{\text{HT}} \)'s are ultraviolet finite.

Finally, we go to high temperatures, where \(\beta m \ll 1 \) and, eventually, \(\beta \to 0 \). Then, our main results, to all orders of perturbation theory, are the following. For fixed

FIG. 1. Amputated Green's functions for (a) \(n = 2 \) to order \(\lambda \), (b) \(n = 2 \) to order \(\lambda^2 \), (c) \(n = 2 \) to order \(\lambda^3 \), (d) \(n = 2 \) to order \(\lambda^3 \).
\[\Delta_z((0, \mathbf{K}_1) \cdots (0, \mathbf{K}_n)) \sim \beta^{2n-2} \Delta_z(\mathbf{K}_1, \cdots, \mathbf{K}_n) \]
\[\text{due to the specific renormalizations (2.8)-(2.11). Let}
\[J(\tau \mathbf{x}) = j(\mathbf{x}), \]
\[\text{(2.12)} \]

where
\[(2\pi)^{-3/2} \int d^3 x j(\mathbf{x}) \exp(i \mathbf{K} \cdot \mathbf{x}) \]

takes on its largest values for |K| < |β|^{-1} and is entirely negligible for |K| > |β|^{-1}, by assumption. Then
\[Z[J] \sim Z[J]^\text{HT}. \]
\[\text{(2.14)} \]

III. PROOF OF DIMENSIONAL REDUCTION
\[[(2.12) \text{ AND } (2.14)] \text{ FOR } m > 0 \]

(1) Recall that for any function \(f(\omega) \) which is analytic in a neighborhood of the imaginary axis \(\omega(n) = -\beta^{-1} \pi n, n = 0, \pm 1, \pm 2, \ldots, \epsilon \to 0^- \) (Ref. 6)
\[\frac{1}{\beta} \sum_{n = -\infty}^{+\infty} f(\omega = i\omega(n)) = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi|\omega|} f(\omega) \]
\[+ \int_{-\infty}^{+\infty} \frac{d\omega}{\pi|\omega|} f(\omega) \exp(\beta \omega) - 1 \]
\[+ \int_{-\infty}^{+\infty} \frac{d\omega}{\pi|\omega|} f(\omega) \exp(-\beta \omega) - 1. \]
\[\text{(3.1)} \]

(2) We shall deal with the renormalized perturbative contributions to the amputated connected Green's functions \(\Delta_z \) which are obtained from those for \(\Delta_z \) by factoring out all propagators for external lines. We omit details regarding Feynman rules, diagrammatics, etc.

(3) The contribution to the renormalized \(\Delta_z \) from Fig. 1(a) is
\[\Delta_z^{(a)}(K)^\text{amp} = \frac{\lambda}{2} \beta^{-1} \sum_{n = -\infty}^{+\infty} \int \frac{d^3 q}{(2\pi)^3} [\omega(n)^2 + v(q)^2]^{-1} \]
\[+ (\delta m^2)^{11}, \]
\[\text{(3.2)} \]

\[A(K) - A(K = 0) \sim \frac{\lambda}{2 \beta} \sum_{n = -\infty}^{+\infty} \int \frac{d^3 K d^3 K_2}{(2\pi)^6} [v(K_1) v(K_2)]^{-2} [v(K_1 + K_2 - K)]^{-2} - [v(K_1 + K_2 - K)]^{-2}. \]
\[\text{(3.6)} \]

Now, let us consider the overall amputated contribution \(\Delta_z^{(b,c)}(K)^\text{amp} \) to \(\Delta_z(K)^\text{HT} \) generated by \(Z[J]^\text{HT} \) and associated to (i) Figs. 1(b) and 1(c) in \(d = 3 \), both of which provide negative divergent contributions [that from Fig. 1(b) equals the first term on the RHS of (3.6)], (ii) \(-\delta m_{HT,1}^2(b) + \delta m_{HT,2}^2(b)\) which are of order \(\lambda^2 \), (iii) the \(\mathbf{K}^2 \) diagram in Fig. 1(d) in \(d = 3 \) (which carries an overall negative sign), where, in turn, the small circle with a cross corresponds to \(\delta m_{HT,1}^2(a) - \delta m_{HT,2}^2(a) \). We cancel the actual (negative) divergent contribution from Fig. 1(c) in \(d = 3 \) with the positive (also divergent) one from the \(-\delta m_{HT,2}^2(a)\) term in Fig. 1(d). Then, the resulting ultraviolet finite expression for \(\Delta_z^{(b,c)}(K)^\text{amp} \) coincides with \(\Delta_z^{(b,c)}((0, K))^\text{amp} \), as given by Eqs. (3.4)-(3.6).
(5) The analysis for other one-particle-irreducible graphs and for diagrams which contain the ones studied above as subdiagrams can be carried out similarly. In all cases, one verifies the validity of (2.12).

(6) We now outline the proof of (2.14) under the stated assumptions on J. Using (2.13), (2.3), and integrating over τ‘s in the right-most side of (2.1), one is led to restrict to vanishing external frequencies for all connected Green’s functions. The dominant contributions to the three-momenta integrations for the latter in (2.1) come from three-momenta much smaller than β^{-1} due to the properties assumed for $j(x)$. By using (2.12), one gets (2.14) directly.

IV. DISCUSSION AND REMARKS

(1) Let $\beta \rightarrow 0$ for given $m > 0$ as in Sec. III and, later, set $m = 0$. If $\lambda > 0$, the dimensionally reduced (ϕ^4) theory in (2.5)—(2.11) with $m = 0$ is infrared finite. This follows by including $\delta m_{HT,j}^2(a)$ (which is positive and finite) in the bare propagator for (2.5) and (2.6), which becomes $\left[K_1^a + 6m_{HT,j}^2(a)\right]^{-1}$, and noticing that $-\delta m_{HT,j}^2(a)$ and $-\delta m_{HT,j}^2(b) + 6m_{HT,j}^2(b)$ are infrared finite. Alternatively, set $m = 0$ first, consider the Green’s functions for $(\phi^4)_{d+1}$ theory at finite temperature for nonexceptional momenta (no partial sum of external momenta vanishes) in order to avoid infrared divergences and take $\beta \rightarrow 0$: the leading contributions to all Green’s functions are generated by (2.5)—(2.11) with $m = 0$ and are infrared finite as stated above (even for exceptional momenta).

(2) We shall give without the analogues for $d = 1, 2$ dimensional spaces of (2.12) and (2.14) (with d^2K’s and K’s replaced by d^2x’s, d^2K’s for $m > 0$). Equations (2.9)—(2.12) also hold, with the same meaning, provided that (i) $Z_A = Z_d = 1$, and (ii) δm^2 be the standard zero-temperature mass renormalization counterterms associated to Figs. 1(a) and 1(b) for $d = 2$ [1(a) for $d = 1$]. The new partition function $Z[j]_{HT}$ with an external source j and connected Green’s functions Δ_{HT} are given through Eqs. (2.5)—(2.7) with $\delta m_{HT}^2 = 6m_{HT,j}^2(a) - \delta m_{HT,j}^2(a)\delta_{d,d}, \delta_{d,d}$ being a Kronecker delta and Eq. (2.9). Then, (2.12) and (2.14) hold for $d = 1, 2$. If $m = 0$ infrared divergences appear.

(3) The triviality/nontriviality of the zero-temperature $(\phi^4)_{d+1}$ theory has attracted much interest. \cite{7,8} Would triviality $(\lambda = 0)$ be true at zero temperature, it would also hold at a small nonzero one but perhaps not for all temperatures. It has been argued that the zero-temperature $(\phi^4)_{d+1}$ theory is nontrivial with either (i) a nonzero mass and an infinitesimally negative bare coupling constant λ_0 \cite{9} or (ii) zero mass and infinitesimally positive λ_0 \cite{10}. Unfortunately, it is not easy to restate those conditions in terms of the renormalized coupling constant λ. Notice that if $\lambda < 0$, the reduced theory (2.5)—(2.11) would have negative noninfinitesimal coupling λ/β and its stability would be in question. Let the zero-temperature $(\phi^4)_{d+1}$ theory with $\lambda > 0$ (even if it would be infinitesimal) be nontrivial, possibly in the massless case (which could escape to the analyses which have arrived at triviality). Then, the reduced theory (2.5)—(2.11) (which would be infrared finite if $m = 0$, as commented above) would have noninfinitesimal coupling λ/β. Since the strict nontriviality of the massive $(\phi^4)_{d}$ theory for small positive coupling has been proved \cite{8} it would also hold, most naturally, for a nonsmall one, one would conclude that for $\lambda > 0$ the initial (possibly, massless) $(\phi^4)_{d+1}$ theory would have fallen at high temperature into a class of nontrivial $(\phi^4)_{d+1}$ theories. Recall that Alles and Tarrach \cite{11} obtained nontriviality for the $(\phi^4)_{d+1}$ theory at finite temperature (however, see Bardeen and Moshe \cite{12}).

ACKNOWLEDGMENTS

The author acknowledges the financial support provided by a Fulbright-Ministerio de Educacion y Ciencia (Spain) grant, through Council for International Exchange of Scholars. He is grateful to Professor B. Zumino, Professor M. K. Gaillard, and the Theoretical Physics Group, Lawrence Berkeley Laboratory for their kind hospitality. He also thanks Professor B. Zumino for reading the manuscript and to Dr. A. Niemi and Dr. M. do Amaral for discussions. This work was supported by the Director, Office of Energy Research, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC03-76-SF00098, the National Science Foundation under Research Grant No. PHYS. 85-15857, and Plan Movilizador de la Fisica de Altas Energias, Comision Asesora de Investigacion Cientifica y Tecnica, Spain (proyecto AE86-0029).