Highly ordered n/p-co-assembled materials with remarkable charge mobilities

Javier López-Andarias, a,b María José Rodríguez, a,c Carmen Atienza, a Juan Luis López, a Tsubasa Mikie, d Santiago Casado, b Shu Seki, c José L. Carrascosa, a,c* and Nazario Martín, a,b*

a Departamento de Química Orgánica I, Facultad de Ciencias Química, Universidad Complutense, E-28040 Madrid, Spain.
b IMDEA-Nanoscience, Campus de Cantoblanco, E-28049 Madrid, Spain.
c Centro Nacional de Biotecnología (CNB)-CSIC, Spain.
d Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Supporting Information Placeholder

ABSTRACT: Controlling self-organization and morphology of chemical architectures is an essential challenge for the search of higher energy-conversion efficiencies in a variety of optoelectronic devices. Here, we report a highly ordered donor/acceptor functional material, which has been obtained using the principle of ionic self-assembly. Initially, an electron donor π-extended tetrafulvalene and an electron acceptor perylene-bisimide were self-organized separately obtaining n- and p-nanofibers at the same scale. These complementary n- and p-nanofibers are endowed with ionic groups with opposite charges on their surfaces. The synergetic interactions establish periodic alignments between both nanofibers resulting in a material with segregated and alternately stacked donor/acceptor nanodomains. Photoconductivity measurements show values for these n/p-co-assembled materials up to 0.8 cmV⁻¹s⁻¹, confirming the effectiveness in the design of these heterojunction structures. This easy methodology offers great possibilities to achieve highly ordered n/p-materials for potential applications in different areas such as optoelectronics and photovoltaic.

The control on the organization and morphology of organic materials at different scales is an essential challenge in current science. In particular, organic materials employed for obtaining efficient photovoltaic devices require a controlled segregation of electron donor/acceptor domains in the active layers because transport of the photo-generated charge carriers occurs through these domains to the electrodes. This control over the organization of nanostructured domains at the same length scale generally results in an increase in conductivity or photoconductivity values. One of the approaches to prepare optoelectronic materials for photon-energy conversion is the use of covalent donor-acceptor (D-A) dyads. In this context, a great variety of D-A dyads have been reported with an elaborated synthetic strategy. These D-A dyads provide nanoscale D-A heterojunctions with different morphologies such as fibrous, tubular or liquid crystals, to name a few.

On the other hand, supramolecular chemistry is gaining attention, when compared to covalent methodologies, due to its higher versatility and easier ensembles preparation. From small molecules and through weak and non-covalent intermolecular interactions such as hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π–π stacking and electrostatic interactions, it is possible to reach highly ordered structures at the nano and mesoscales.

Here, we now report, to the best of our knowledge, the first example of highly ordered n/p-functional materials obtained by the electrostatic co-assembly of two complementary n- and p-nanofibers, which have been previously formed through self-assembled small molecules, namely a π-extended tetrafulvalene (exTTF) derivative as electron-donor and a perylene-bisimide (PBI) derivative as electron-acceptor (Figure 1). The only requirements for the electrostatic co-assembly were: (i) the n and p-nanofibers should be endowed with ionic groups with opposite charges on their surfaces and (ii) these fibers should be of the same size. Our approach has important advantages with respect to that previously reported since it does not require neither tedious synthetic procedures nor special experimental conditions to obtain highly ordered materials.

Figure 1. Molecular structures with schematic nanoarchitectures of exTTF derivative 1 and PBI derivatives 2a-b (left). Schematic representation of the n/p-material obtained by the co-assembly of previously self-assembled molecules (right).

Recently, we have reported the formation of p-type nanofibers from a curved 9,10-di[(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (exTTF) moiety which is covalently connected to a pentapeptide sequence (H₂N-AGAGA-COOH) with a carboxylic acid in the termini position. The nanofiber formation was promoted by π-π interaction between exTTF units and the β-sheet-forming peptide. The carboxylic acid groups not only guaranteed the water solubility, but also provided negative charges on the surface of fibers, which further enabled an
external control to the aggregates by charge screening. By considering the above points, we have designed two different complementary acceptor moieties of PBI which are symmetrically functionalized with polar tails to ensure the solubility in aqueous medium. Furthermore, guanidinium or quaternary ammonium groups (2a and 2b, respectively) present in the terminal positions of PBI were acting as counterions for the carboxylic acids in the complementary exTTF’s arrays (for synthetic procedure see Supporting Information). Similar to p-type exTTF fibers, PBI was able to form self-assembled n-type nanofibers that will be described below. The major challenge in this approach is the ionically co-assembled of the individually self-assembled nanofibers to form highly ordered p/n-functional materials, which guaranteed an enhancement in their photoconductivity properties and, thereby maximize their potential in, for instance, photovoltaic device applications (Figure 1).

Initially, the ability of the PBI derivatives (2a and 2b) to form self-assembled architectures was examined by UV-vis spectroscopy and microscopic techniques. The absorption spectra of 2a and 2b in methanol showed a well-resolved vibronic structure ranging from 400 to 500 nm which is characteristic for the Se-S transition of isolated PBI chromophore (Figure S1). However, the absorption spectra of 2a and 2b in distilled water at different concentrations (1 × 10^{-6} – 1 × 10^{-3} M) showed a broad spectrum with a lower peak intensity and significant blue-shift in the absorption maximum (from 520 to 500 nm) with appearance of a shoulder peak at 542 nm. These features suggest the formation of face-to-face π stacks (H-aggregate) of rotationally displaced PBI chromophores. The morphology of these PBI aggregates (2a and 2b) dried from aqueous solution has also been studied using atomic force microscopy (AFM) and the images obtained are shown in Figure S2. The formation of fibers were observed for 2a and 2b with a height around 3.0 nm in both cases.

After studying the self-assembly properties of these three small molecules separately, we prepared the hybrid materials by combining p-type exTTF fibers (1) and n-type PBI fibers (2a and 2b) by utilizing the electrostatic interactions between negative carboxylic groups (1) and positive guanidinium (2a) or quaternary ammonium (2b) groups in aqueous solution.

When equal volumes of dilute aqueous solutions of 1 (1 × 10^{-3} M, 10 eq of NaHCO3) and 2a/2b (1 × 10^{-3} M) were mixed, we observed an immediate formation of red precipitate in solution. The precipitates of 1-2a or 1-2b were separated from the starting materials by repeated centrifugation and redispersion in distilled water. The purified homogeneous dispersions of 1-2a and 1-2b in water were characterized by UV-visible absorption spectroscopy (Figure 2a and Figure S3). It is important to note that, the UV-visible spectra obtained for the dispersions were essentially a combination of those acquired for 1 and 2a/2b individually in aqueous solution, indicating that, electronic properties of individually aggregated chromophores (exTTF and PBI) were not perturbed in the co-assembled state. Also intensity in the observed absorption spectra of co-assembled resembles the simulated spectra for the combination of 1:2 equivalents of 1 and 2a/2b, which indicates the quantitative electrostatic interactions and formations of co-assembled 1:2a and 1:2b. Moreover, only by addition of polar protic organic solvents such as methanol, the original absorption bands for isolated molecules of 1 and 2a/2b were recovered, disrupting every possible non-covalent interactions in the n/p-nanostructure. This fact, in turn, attests the reversibility of the process (Figure S4).

The n/p-co-assembly of 1 with 2a or 2b through electrostatic interactions were also monitored by circular dichroism (CD) spectroscopy. The evolution of the dichroic signal from 1 to 1,2a and 1,2b is shown in Figure 2b. Initially, as it has been described in our previous work, a soft basic aqueous solution of compound 1, where the p-type exTTF nanofiber were formed, exhibited a strong bisignate signal with a positive Cotton effect at 480 nm, a negative Cotton effect at 431 nm, and a zero crossing point at 456 nm due to the chiral organization of exTTF units. When the dichroic spectra of a clean dispersion of 1,2a and 1,2b is monitored, it is remarkable that the negative Cotton effect of exTTF at 431 nm is maintained, and two new negative Cotton signals appeared at 542 and 500 nm, which are matching with the absorption bands of 2a and 2b, being more evident in the case of 1,2b. This observations indicate the existence of chiral PBIs aggregates in the n/p-co-assembly which is induced by the exTTF’s arrays. The positive peak at 480 nm was significantly reduced since it has been presumably neutralized by the intensity of new negative dichroic signals. It is worth to mention that intensity before and after addition of 2a or 2b was not comparable due to the scattering in the dispersion of n/p-co-assembly. Moreover, the characteristic β-sheet fingerprint for p-type nanofibers of 1 (between 220-260 nm) was preserved in the n/p-nanostructure (Figure S5b). All these experimental findings demonstrated the maintenance of the chirality and the order in the co-assembled systems.

![Figure 2](image_url)

Figure 2. (a) Absorption spectra for aqueous solutions of 1 (yellow), 2a (purple) and for the dispersion obtained by mixing of both solutions (solid red). Dashed red line represents the simulated spectra for mixture with a stoichiometry of 1,2a. (b) Circular dichroic spectra of 1 (yellow), 1,2a (solid red) and 1,2b (dashed red).

In order to confirm the molecular composition of the materials in 1,2a and 1,2b, the corresponding thin films were investigated by X-ray photoelectron spectroscopy (XPS; Figure S6), which ascertained the quantitative coupling between oppositely charged building blocks at the molecular level. One double-charged PBI derivative forms co-assembly with two exTTF molecules. This results proved the formation of the n/p-co-assembled nanostructure with 2:1 stoichiometry (1,2a and 1,2b).

However, the most interesting features of these n/p-materials were obtained from scanning and transmission electron microscopies (SEM and TEM), and also by small angle X-ray scattering (SAXS) measurements. Stupp et al thoroughly investigated the co-assembly of small molecules and polymers such as peptide amphiphiles and polysaccharide hyaluronic acids. They reported the formation of ordered sacs and membranes by co-assembly of these molecules. In line with those studies, using the same methodology, we propose the formation of electroactive closed sacs by co-assembly of two self-assembled small molecules (1 and 2a/2b). These supramolecular ensembles can be easily prepared by injecting small amount of concentrated aqueous solution (5 × 10^{-3} M) of one chromophore into equally concentrated bulk solution of other (Figure S7). Although these sacs are formed instantaneously, they were allowed to grow further within the solution for several days before investigating the morphology and achieve the maximum organization. SEM of dried sacs revealed the presence of regions with seemingly perfect parallel alignment of fibers, together with randomly distributed fiber areas. In both cases, homogeneous fibers with diameters ranging from 10 to 20 nm were observed. The length of the fibers found to be several tens of micrometers (Figure 3a-b and S8). Moreover, it is possible to observe a dense packing of the fibers longitudinal to its long axis, with a thickness of around 30 μm. To
the best of our knowledge, this is the first example where the ionic co-assembly of two oppositely charged self-assembled molecular aggregates leads to the formation of n/p-type functional material with this level of organization.

We further investigated the surface morphology of the n/p-co-assembled materials by AFM. The AFM images revealed the presence of fibers with a height in the range of 8 to 14 nm, measured on the most individualized ones (Figure S9), which are in accordance with the diameter observed in SEM images. These results confirm the dramatic increase in overall width of the n/p-co-assembled materials when compared with the individually self-assembled p-type exTTF or n-type PBI fibers.

The internal structure of these self-assembled materials was elucidated by TEM, by drop-casting a clear dispersion of 1,2a or 1,2b. Regularly alternating domains arranged longitudinal to the long axes of the fibers were found, as shown in Figure 3 c-d (dark regions in the micrograph indicate positive staining of carboxylates by uranyl acetate), with a domain width of around 4.5 ± 0.6 nm.

![Figure 3](image)

Figure 3. Microscopic images of the co-assembled 1,2a. (a, b) SEM micrographs of the fiber-composed membrane at different magnifications. (c, d) TEM micrographs of the fiber-like structures with aligned internal domains at different magnifications (dark regions in the micrograph indicates the positive staining of carboxylates by uranyl acetate). (e) Optical micrograph of a filament without (top, left) and with (top, right) polarized light, and image of the just-formed filament (down). (f) Fluorescence confocal micrograph of the filament.

Interestingly, we found that not only sacs with ordered membranes but also macroscopically aligned bundled filaments can be prepared by manual drawing of one solution into the other using a pipette (Figure 3e and S11). When these filaments are taken out of the solution and deposited on a surface, birefringence was observed along the length of the strand using a polarized optical microscope. This observation also proved the control in the macroscopic alignment of these hybrid materials extending over centimeters. Furthermore, this fact was confirmed by fluorescence confocal microscopy where fluorescence coming from PBI moieties presents an unambiguous orientation along the string axis (Figure 3f and S12).

To verify the extent of supramolecular order in the n/p-co-assembled material, we carried out the SAXS studies of aligned bundled filaments. The SAXS analysis for 1,2a and 1,2b showed two peaks with d-spacing of 9.3 and 5.8 nm, which were attributed to the (10) and (01) reflections of a rectangular packing, corroborating the presence of long-range order in the hybrid materials (Figure 4 and SX). Moreover, X-ray powder diffraction (XRD) experiments supported the existence of well-defined β-sheets showing a set of two broad peaks with 2θ = 9.7º and 19.3º (d-spacing= 9.1 and 4.6 Å, respectively) (Figure S13). The molecular modeling supports the periodicity in the internal organization which was observed in TEM images with a width of around 3.9-5.1 nm (Figure 3d). A schematic representation of the co-assembly is depicted in Figure 4.

![Figure 4](image)

Figure 4. SAXS pattern for the co-assembled filament of 1,2a (solid blue) and 1,2b (dashed blue) and schematic representation of the organization punctuating the repetition distance. Yellow- and red-colored parts represent the exTTF and PBI units, respectively.

Based on the confined H-aggregate stacking structure of PBI and exTTF motifs with inter-planar distances of ~3.5 Å,10,11 the molar extinction coefficient of PBI (7.4 × 10^4 mol
The yield of the photo carrier generation (ϕ) was estimated immediately after the pulse exposure and are found to be 2.2×10^{-4} and 1.2×10^{-4} for $12a$ and $12b$, respectively. On the assumption of balanced number of charges between exTFET cations and PAN anions, the quantitative analysis of ϕ was performed, giving $\Sigma \mu$ in hydrogels of $12a$ and $12b$ as 0.5 and 0.8 cm2/Vs, and this is the case giving a high value of $(\Sigma \mu)_{\text{max}}$, hence provided the effective hetero-junction structures in $12a$ and $12b$.

Figure 5. (a) Conductivity transients observed for $12a$ upon exposure for 355 nm, 9.1 x 10^7 photons/cm2. (b) Transient absorption spectra recorded for $12a$ in solid films, upon excitation at 355 nm, 5.5 x 10^7 photons/cm2. The red, green, and blue spectra were recorded immediately after the pulse exposure of 1 (red), 2 (green), and 8 (blue) μs, respectively.

In summary, we have demonstrated the formation of highly ordered functional materials from small molecules such as π-extended tetrafi-

\section*{ASSOCIATED CONTENT}

\section*{Supporting Information}

Details of synthesis and fully characterization by NMR, mass spectrometry, infrared, absorption and CD spectroscopy, scanning and transmission electron microscopies (SEM and TEM) and X-ray powder diffractions (XRD) are available free of charge via the Internet at http://pubs.acs.org.

\section*{AUTHOR INFORMATION}

\section*{Corresponding Author}
nazmar@ucm.es

\section*{Author Contributions}

$+$These authors contributed equally to this work.

\section*{Notes}

The authors declare no competing financial interests.

\section*{ACKNOWLEDGMENT}

This work was supported by the European Research Council ERC-2012-ADG_20120216 (Chiralcarbon), Ministerio de Economía y Competitividad (MINECO) of Spain (project CTQ2011-24652; BFU2011-29308 to J.L.C; Ramón y Cajal granted to C.A.) and the CAM (MADRISOLAR-2 project S2009/PPQ-1533). N. M. thanks to Alexander von Humboldt Foundation.

\section*{REFERENCES}

(2) (a) Che, Y.; Huang, H.; Xu, M.; Zhang, Ch.; Bunes, B. R.; Yang, X.; Zang L. J. Am. Chem. Soc. 2011, 133, 1087-1091. (b) Kira, A.; Ume-

(a) Hizume, Y.; Tashiro, K.; Charvet, R.; Yamamoto, Y.; Saeki, A.; Seki, S.; Aida, T. J. Am. Chem. Soc. 2010, 132, 6628-6629. (b) Char-

(a) Vergara, J.; Barber, J.; Serrano, J. L.; Ros, M. B.; Sebastiani N.; Fuenta R.; López, D. O.; Fernández, G.; Sánchez, L.; Martín, L. An-

(a) López-Andriatas, J.; López, J. L.; Atienza, C.; Brunetti, F. G.; Rome-

