Asymptotic aging in structural glasses

T. S. Grigera,1,∗ V. Martín-Mayor,2,3 G. Parisi,4 and P. Verrocchio2,3
1Centro Studi e Ricerche “Enrico Fermi,” via Panisperna, 89A, 00184 Roma, Italy
2Departamento de Física Teórica, Universidad Complutense, Avenida Complutense, 28040 Madrid, Spain
3Istituto di Bioinformatica e Fisica di Sistemi Complexi (BIFI), Università di Zaragoza, 50009 Zaragoza, Spain
4Dipartimento di Fisica, Università di Roma “La Sapienza,” (SMC-INFM unità di Roma–Italy INFN sezione di Roma)
P. le Aldo Moro 2, 00185 Roma, Italy
(Received 17 March 2004; published 19 July 2004)

Using a nonlocal Monte Carlo algorithm, we study the aging of a fragile glass, being able to follow it up to equilibrium, down to 0.89T_{MC} (T_{MC} is the mode-coupling temperature), and up to long waiting times at lower temperatures. We show that the fluctuation-dissipation ratio is independent of the dynamics chosen and is compatible with a phase transition and that the scaling behavior of the aging part of the correlation supports the full-aging scenario.

DOI: 10.1103/PhysRevB.70.014202 PACS number(s): 61.20.Lc, 61.43.Fs

Aging is found in many complex systems out of equilibrium, such as supercooled liquids,1 polymers,2 colloids,3 or spin-glasses,4 and understanding it is a necessary step towards a unified description of such systems.5,6 After a short transient since preparation, a state is reached in which one-time observables (e.g., energy, enthalpy) vary extremely slowly, while two-time quantities (correlations, susceptibilities) strongly depend on the age (or waiting time t_w, i.e., the time elapsed since preparation) of the system as well as on frequency ω (or the measurement time t). Despite recent efforts, our knowledge of aging of real materials is scant in the theoretically important regime of large t_w and small frequency, where universal features should show up.5 Two issues still open are the scaling of correlations and the behavior of the fluctuation-dissipation ratio.

Consider observables A and B (B couples to an external field h). The susceptibility χ [i.e., the time integral of the linear response R(t_w, t + t_w) = δA(t + tw)/δh(t_w)|_{h=0}] and the correlation function C(t_w, t + t_w) = ⟨A(t + tw)B(t_w)⟩ are expected to be of the form5

\[C(t_w, t + t_w) = C_{ag}(t_w) + C_{ag}(t + t_w), \]

where g(t) is a monotonic function acting as an “effective” correlation time, and C_{ag} describes the aging of the system.7 Most published studies focus on the scaling properties of C_{ag}; it is generally a function of t / t_w, but there is a lack of universality in the values of the exponent μ, embarrassing in view of the claimed equivalence of complex systems. Full aging (μ = 1) has been clearly observed so far only in spin-glasses.8 For colloids, both superaging8 (μ > 1) and full aging has been reported.10 Polymers show rather subaging (μ < 1).2,11 as has also been observed in simple liquids.12 However, the values quoted often correspond to different time regimes, and the regime where t_w → ∞ with t / t_w fixed has not been carefully studied (except for spin-glasses). For example, in glycerol13 full aging has not been seen even close to the glass temperature T_g (almost at equilibrium) or at lower temperatures T. In both regimes the explored frequencies were much larger than 1 / t_w.

Aging is also characterized by a nontrivial behavior of the fluctuation-dissipation ratio (FDR), namely,

\[X(t_w, t + t_w) = \frac{\langle A(t + tw)B(t_w) \rangle}{dC(t_w, t + tw)|_{t_w=0}}, \]

The fluctuation-dissipation theorem (FDT) states that X = 1 in thermodynamic equilibrium, but this need not be so during aging, and FDT violations (i.e., X ≠ 1) are observed. Experiments,14,15 mean-field results,16 and simulations17,18 suggest that the FDR depends on time only through the correlation function, i.e., X = X(C(t_w), t_w). In structural glasses, in which we concentrate from now on, simulations also show that at fixed t_w, X takes essentially two values: X(C) = 1 for C greater than some q_{EA}(T) (called the Edwards-Anderson parameter) and X(C) = x(t_w) < 1 for C < q_{EA}(T). Since T/X can be interpreted as an effective temperature T_{eff},16 it seems that FDT violations in structural glasses can be characterized by a single time-dependent T_{eff}(t_w) = T/x(t_w), related to the slowest degrees of freedom. This lacks experimental confirmation. (Note that other definitions of effective temperatures have been explored13,19) Also open is the issue of the behavior of T_{eff}(t_w) as t_w → ∞ (numerical data available cover only very short waiting times in the sense that one-time quantities are still quickly evolving12,18), of great theoretical interest because it is related to the possible thermodynamic meaning of T_{eff}.16

In this paper we study the aging dynamics down to 0.53 T_{MC} (T_{MC} is the mode-coupling temperature, below which dynamics slows down dramatically), reaching very large waiting times. This can be achieved through the use of a nonlocal algorithm [Swap Monte Carlo or SMC (Ref. 21)], which greatly accelerates the dynamics. We reach an asymptotic regime where the correlation function shows full aging within errors (supporting the analogy with spin glasses3), and where FDT violations are independent of the dynamics and of the age of the system.

0163-1829/2004/70(1)/014202(4)/$22.50 70 014202-1 ©2004 The American Physical Society
We have simulated the soft-phase binary mixture, a simple fragile glass former, using a nonlocal Metropolis Monte Carlo algorithm [hereafter SMC (Ref. 21)] which adds swap moves (with probability p) to standard local Monte Carlo (LMC). Although swap acceptance is very low ($\approx 3 \times 10^{-3}$) the equilibration time is considerably shortened; e.g., at 0.89T_{MC} extrapolations estimate it to be three orders of magnitude larger for LMC than for SMC (note that other nonlocal algorithms have proved useful in simulations of structural glasses). We used the following protocol: Starting from a random configuration, a system of $N=2048$ particles was instantaneously quenched to the final temperature T and allowed to evolve for t_w steps. This preparation was done with the SMC algorithm with $p=0.1$, which gives the faster equilibration for this system size. After t_w, the correlation and response functions in the presence of an external field h were computed, mostly in SMC runs with $p=0.1$, but also in LMC and SMC runs with different p in order to assess the dependence of the results on the dynamics. Due to the swap moves, particle diffusion is not a convenient observable. Instead, we divided the simulation box in N_c cubic subcells and considered the quantity

$$A(t) = \frac{1}{N_c} \sum_{\alpha=1}^{N_c} \epsilon_{\alpha} n_{\alpha}(t),$$

where $\epsilon_{\alpha}=\pm 1$ randomly and n_{α} is the occupation number of subcell α. The side of the subcells was about $0.35\sigma_{AA}$, so that essentially $n_{\alpha}=0.1$. Note that swap moves do not change $A(t)$. To measure response, a term $\lambda N A$ was added to the Hamiltonian, with $\lambda = h k_B T$. We considered the correlation $C(t_w,t_w+t)=(\langle NA(t_w)A(t_w+t)\rangle$, where $\langle \rangle$ means average over both thermal histories and the ϵ_{α}, together with the integrated response $k_B T \chi(t_w,t_w+t)=(\langle A(t_w+t)\rangle/h)^2$.

With SMC we can equilibrate the system down to $T=0.89T_{MC}$. The correlation $C(t_w,t_w+t)$ shows aging up to $t_w=10^3$, but does not change between $t_w=10^3$ and 10^6, which is approximately the region where the energy reaches a stationary value (Fig. 1). We conservatively estimate the auto-correlation time as the time τ needed for C to reach the asymptotic value $N/N_c \approx 0.04$, obtaining $\tau=2 \times 10^5$, much smaller than 10^6 (the total length of the simulation). Hence we claim that the system has equilibrated, which is further confirmed by the fact that the FDT holds. In contrast, well below 0.89T_{MC} the system is out of equilibrium up to $t_w=2 \times 10^7$ (our largest observational time). A stretched exponential fit of the equilibrium correlation in the late α-relaxation regime yields a stretching exponent $\beta=0.3$. The equilibrium LMC correlation function does not decay to N/N_c within the simulated times; hence it is still an open point whether SMC changes the shape of the correlations in equilibrium, or whether the two dynamics are related by a simple rescaling of time.

We first address the issue of the scaling of the correlation during aging at $T=0.53T_{MC}$ (in general far below T_g, e.g. for glycerol this corresponds to $T \approx 140 \text{ K}$, while $T_g \approx 190 \text{ K}$). With SMC we find (Fig. 2) that the correlations for $t_w=5 \times 10^5$.
The limiting value of T_{eff} as $t_{w} \to \infty$ is of great theoretical interest. If the system eventually equilibrates, then $T_{\text{eff}} \to T$, as we have found for $T=0.89T_{\text{MC}}$. Approaches that consider aging a result of critical slowing down due to the proximity of a critical point which is never reached (because it is located at $T=0$) or because of the impossibility to establish a “liquid” long range order predict this to be the case for all temperatures. A different view relates the asymptotic value of the FDR to a thermodynamic transition described by replica symmetry breaking. Above the transition, $X(C)$ is predicted to reach slowly the equilibrium value 1 [so $T_{\text{eff}} \to T$ (Ref. 6)], while below the FDR it should remain nontrivial and T_{eff} should tend to a constant > T, since the system never equilibrates. In this scenario the asymptotic FDR is claimed to classify complex systems in universality classes.

A third possibility is that FDT violations are due to nucleation and slow growth of the crystal phase, in which case at long times one expects the coarsening regime to be reached, and so $T_{\text{eff}} \to \infty$.

Our results for $0.53T_{\text{MC}}$ do not seem to support this last possibility. The data are instead compatible with the presence of a thermodynamic replica symmetry breaking (RSB) transition, since FDR does not seem to change between $t_{w}=5 \times 10^{3}$ and $t_{w}=5 \times 10^{6}$ (E_{IS} are, respectively, 1.691 and 1.671). Note that this is the same regime where the system displays full aging. It cannot be excluded that $T_{\text{eff}} \to T$, but it looks less likely if we note that extrapolating $E_{\text{IS}}(t_{w})$ to $t_{w} \to \infty$ with a power law gives an asymptotic $E_{\text{IS}}=1.642$. In the first approximation the RSB approach predicts that T_{eff} equals the transition temperature, which unfortunately has been only roughly estimated. We just observe the fact that, at the qualitative level, the measured T_{eff}/T in Fig. 4 levels off at a value greater than 1 in the late aging regime supports the RSB scenario.

In summary, we have studied numerically the late aging regime of a simple glass-forming liquid using local and non-local Monte Carlo (SMC). We find that the scaling of the correlation functions and the FDR during aging do not depend on the dynamics. This is a strong generalization of the previous findings that equilibrium relaxation in the Lennard-Jones mixture is qualitatively identical under different local dynamics (except, as here, for very short times). We have found that correlation functions in the late aging regime show within errors full-aging scaling, suggesting an equivalence between the aging dynamics of structural and spin glasses. This should be searched experimentally at frequencies comparable or shorter than $1/t_{w}$. We also measured the FDR while taking one-time quantities closer to asymptotic values than in previous studies. FDT violations do not imply a thermodynamic transition. However, if a transition does exist, there should be a correspondence between the asymptotic T_{eff}, which is accessible to experiments, and the order parameter, which is not. The FDR’s measured in experiments and simulations up to now depend strongly on the age of the system; hence their utility in investigating the existence of a transition is still an open point.
Here, we have been able to reach a regime where T_{eff} has no noticeable time dependence. Interestingly enough, it coincides with the full-ageing regime. At the lowest temperature, the T_{eff} measured over a time window of 3 orders of magnitude approaches a finite value, different from the equilibrium temperature. This seems only slightly compatible with a critical slowing down ($T_{\text{eff}} \rightarrow T$) or the growth of a crystal phase ($T_{\text{eff}} \rightarrow \infty$) and favors instead the phase transition scenario. Our result suggests that the relevant information for an understanding of aging in structural glasses has to be looked for in a regime that so far had not been investigated, either in experiments or in simulations.

We thank A. Cavagna, B. Coluzzi, L. A. Fernández, and F. Sciortino for discussions. Simulations used the full RTN3 cluster of U. Zaragoza for six months. V.M.-M. was partially supported by MCyT (Spain) (Ramon y Cajal program, FPA2001-1813 and FPA2000-0956). P.V. was supported by the ECHP programme, Contract No. HPRN-CT-2002-00307, DYGLAGEMEM.