TESIS DOCTORAL

Estudio comparativo de los modelos de estimación de riesgo cardiovascular para la población española

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Miguel Ángel Artacho Rodríguez

Director

Jesús Millán Núñez-Cortés

Madrid, 2018

©Miguel Ángel Artacho Rodríguez, 2017
ESTUDIO COMPARATIVO DE LOS MODELOS DE ESTIMACIÓN DE RIESGO CARDIOVASCULAR PARA LA POBLACIÓN ESPAÑOLA.

MIGUEL ÁNGEL ARTACHO RODRÍGUEZ

2017
PROGRAMA DE DOCTORADO EN CIENCIAS BIOMEDICAS

TESIS DOCTORAL

AÑO 2017

UNIVERSIDAD COMPLUTENSE DE MADRID

AUTOR:
MIGUEL ÁNGEL ARTACHO RODRÍGUEZ
FACULTATIVO ESPECIALISTA DE ÁREA DE MEDICINA INTERNA.
SERVICIO DE MEDICINA INTERNA.
HOSPITAL CAN MISSES.

DIRECCIÓN DE TESIS:
JESÚS MILLÁN NÚÑEZ-CORTÉS
CATEDRÁTICO-JEFE DE SERVICIO DE MEDICINA INTERNA
DEPARTAMENTO DE MEDICINA. HOSPITAL GENERAL UNIVERSITARIO
GREGORIO MARAÑÓN.
FACULTAD DE MEDICINA DE LA UNIVERSIDAD COMPLUTENSE DE MADRID.
<table>
<thead>
<tr>
<th>Sección</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Resumen</td>
</tr>
<tr>
<td>2.</td>
<td>Introducción</td>
</tr>
<tr>
<td>3.</td>
<td>Actualización del problema</td>
</tr>
<tr>
<td>4.</td>
<td>Comparación entre los distintos modelos para la estimación del riesgo cardiovascular</td>
</tr>
<tr>
<td>5.</td>
<td>Hipótesis de trabajo y objetivos</td>
</tr>
<tr>
<td>6.</td>
<td>Material y métodos</td>
</tr>
<tr>
<td>7.</td>
<td>Resultados del estudio</td>
</tr>
</tbody>
</table>

INDICE DE CONTENIDO

INDICE DE CONTENIDO ... 3

LISTADO DE ABREVIATURAS .. 5

AGRADECIMIENTOS .. 7

1.- RESUMEN .. 9

2.- INTRODUCCIÓN .. 18

3.- ACTUALIZACIÓN DEL PROBLEMA .. 20

3A.- ESTIMACIÓN DEL RIESGO CARDIOVASCULAR 24

3B.- MODELO AMERICANO (FRAMINGHAM) 27

 Tabla original (Anderson, 1991) 28

 Tabla por categorías (Wilson, 1998) 30

 Nuevas Tablas (D’Agostino, 2000) 32

3C.- MODELO EUROPEO (SCORE) ... 35

3D.- MODELO REGICOR. ADAPTACIÓN DEL MODELO FRAMINGHAM A LA POBLACIÓN ESPAÑOLA .. 40

3E.- MODELO DORICA .. 43

4.- COMPARACION ENTRE LOS DISTINTOS MODELOS PARA LA ESTIMACIÓN DEL RIESGO CARDIOVASCULAR 45

 FRAMINGHAM vs SCORE ... 46

 FRAMINGHAM vs REGICOR .. 48

 FRAMINGHAM vs DORICA ... 51

 SCORE vs REGICOR ... 51

 SCORE vs DORICA .. 52

 FRAMINGHAM vs SCORE vs REGICOR 53

 FRAMINGHAM vs SCORE vs REGICOR vs DORICA 55

4A.- ESTIMACION DEL RIESGO EN SUBPOBLACIONES ESPECÍFICAS ... 56

5.- HIPÓTESIS DE TRABAJO Y OBJETIVOS 58

6.- MATERIAL Y MÉTODOS: ... 60

7.- RESULTADOS DEL ESTUDIO .. 70

7A.- DESCRIPCION DE LA MUESTRA ... 70

7A. 1.- FACTORES DE RIESGO CARDIOVASCULAR 74

7A. 2.- ENFERMEDADES CARDIOVASCULARES 92

 7A. 2.1.- ENFERMEDAD ARTERIAL PERIFERICA 94

 7A. 2.2.- CARDIOPATÍA ISQUÉMICA 98

 7A. 2.3.- ENFERMEDAD CEREBROVASCULAR 102

7B.- ESTIMACION DEL RIESGO CARDIOVASCULAR EN LA MUESTRA ... 105

7B. 1.- MODELO FRAMINGHAM ... 106

7B. 2.- MODELO SCORE .. 108

7B. 3.- MODELO REGICOR .. 101

7B. 4.- MODELO DORICA .. 112
7C.- RELACIONES ENTRE LA ESTIMACION DEL RIESGO CARDIOVASCULAR Y LOS MODELOS DE ESTIMACION USADOS

7C. 1.- ASOCIACION ENTRE LOS MODELOS

7C. 2.- CONCORDANCIAS ENTRE LOS MODELOS

7C. 3.- DISCORDANCIAS ENTRE LOS MODELOS

8.- DISCUSION Y COMENTARIOS

9.- CONCLUSIONES

10.- BIBLIOGRAFIA

11.- LISTADO DE ANEXOS

12.- LISTADO DE TABLAS

13.- LISTADO DE FIGURAS
LISTADO DE ABREVIATURAS

ACV: Accidente cerebrovascular.
c-HDL: High Density Lipoprotein.
c-LDL: Low Density Lipoprotein.
EAP: Enfermedad arterial periférica.
EACPR: European Association for Cardiovascular Prevention and Rehabilitation (Asociación europea para la prevención y rehabilitación cardiovascular).
ECV: Enfermedad(es) cardiovascular(es).
ECor: Enfermedad coronaria.
EES: Encuesta Europea de Salud
FRCV: Factores de riesgo cardiovascular.
HTA: Hipertensión arterial.
IAM: Infarto agudo de miocardio.
INE: Instituto Nacional de Estadística.
IQR: Rango intercuartílico (acrónimo del inglés: InterQuartile Range).
OMS: Organización Mundial de la Salud.
PAD: Presión arterial diastólica.
PAS: Presión arterial sistólica.
RCV: Riesgo cardiovascular.
REGICOR: REgistrar GIronès del COR.
SCORE: Systematic COronary Risk Evaluation (“Evaluación sistemática del riesgo coronario”).
SD: Desviación estándar (acrónimo del inglés: Standard Deviation).
TG: Triglicéridos.
TLRs: Acrónimo del inglés: Toll-Like Receptors.
VIH: Virus de la inmunodeficiencia humana
AGRADECIMIENTOS

Me gustaría comenzar el presente trabajo agradeciendo a las siguientes personas por su apoyo constante a lo largo de estos años pasados y gracias al cual me he sentido reforzado para la consecución del mismo:

En primer lugar, no solo agradecimientos sino dedicatoria especial a mis padres, Miguel Ángel y María de los Reyes. Ellos me inculcaron desde mi niñez la honestidad, la sinceridad, el afán de superación, la crítica constructiva y la humildad. Valores todos ellos que han sido de suma importancia para la realización de este trabajo y, más aún, para avanzar con paso firme en mi proyecto de vida.

A Olga López Berastegui, amada esposa, quien me brindó todo su apoyo durante largos días de estudio y trabajo en estos años y quien supo calmar mis inquietudes, e incluso momentos de nerviosismo y desesperanza, con todo su cariño.

Al Dr. Jesús Millán Núñez-Cortés, director del presente trabajo, por su constante esfuerzo en transmitirme su convicción en las ideas que la fundamentan, logrando una excelente motivación para la consecución del trabajo. Además quisiera destacar su dirección firme y su gran capacidad de diálogo y discusión/crítica constructiva.

Y finalmente, al Dr. José Vicente Fernández-Montero, compañero de especialidad médica y, ante todo, gran amigo, quien me regaló en todo momento su tiempo y consejos a lo largo de todo este tiempo.
1.- RESUMEN.

Introducción:
Las enfermedades cardiovasculares continúan liderando las causas por mortalidad en nuestro medio y son una importante fuente de morbilidad para la población, constituyendo un importante problema de Salud Pública.

En el siglo pasado, la comunidad científica aunó esfuerzos por lograr modelos estadísticos predictivos acerca del riesgo cardiovascular de la población mediante métodos de regresión logística. El primero en confeccionarse fue el modelo americano, sobre la población de Framingham y que ha constituido el paradigma de los modelos subsiguientes. Posteriormente, algunos autores descubrieron discordancias al aplicar tal modelo sobre diferentes poblaciones no americanas (entre ellas europeas), lo que llevó a la conclusión de que se necesitaría un modelo diferente para el continente europeo. Ello se fundamentó en la diferente distribución en la prevalencia de los factores de riesgo cardiovascular que constituyen la esencia de los modelos. Ese modelo fue llamado, por su acrónimo, SCORE. No obstante, años más tarde se constataron nuevas discordancias cuando se aplicaba el modelo europeo a las diferentes poblaciones europeas, por lo que se optó por dividir a los países según presentaran alto o bajo riesgo cardiovascular, realizando un modelo para cada grupo. Actualmente se dispone de una versión de esta herramienta en internet, con el fin de hacerla más accesible. A nivel de la nación española se confeccionaron dos modelos con metodología diferente: REGICOR fue realizado sobre una población mediterránea concreta (Girona) y DORICA fue realizada recolectando datos sobre la prevalencia de los factores cardiovasculares de nueve comunidades autónomas.

En cuanto a las variables participantes en cada modelo de estimación del riesgo cardiovascular hay algunas diferencias, sin embargo, la edad, la presencia o ausencia de Diabetes Mellitus, la presencia o ausencia de tabaquismo, presión arterial, colesterol y el género son constantes. Algunos modelos utilizan la presión arterial incluyendo solo la presión arterial sistólica (PAS) y otros usan el mayor valor entre la presión arterial sistólica y la presión arterial diastólica (PAD). También hay modelos que permiten la estimación de riesgo cardiovascular con la cifra de colesterol unido a lipoproteínas (c-LDL), en lugar de usar la cifra del colesterol total. A pesar de la disponibilidad de herramientas de cribado para la estimación del riesgo cardiovascular individual que faciliten a los profesionales de la salud la toma de decisión en
intervenciones preventivas sobre la salud cardiovascular, hoy en día persisten dudas acerca de la eficacia de cada herramienta aplicada sobre distintas poblaciones. De ello se dirime la relevancia de disponer de un modelo lo más efectivo posible para estratificar a los individuos según su riesgo cardiovascular individual. Esta razón nos obliga a estudiar y analizar las diferentes opciones disponibles para conocer el grado de concordancia o discordancia entre ellas aplicadas a una misma población.

En la actualidad existen algunos estudios cuyo objetivo ha sido valorar las concordancias y discrepancias entre algunos de los modelos previamente mencionados, así como valorar las posibles consecuencias que se derivarían sobre la intervención farmacológica para reducir el riesgo cardiovascular de algunas muestras de la población española vinculadas a un área sanitaria. No obstante, no se dispone de estudios en que se comparen la estimación del riesgo cardiovascular por los cuatro modelos comentados, y que se lleven a cabo sobre una muestra de la población general española.

Material y Métodos:

Realizamos un estudio descriptivo transversal sobre la población general española, con selección de la muestra en un recinto ferial en el año 2008. Se seleccionaron un total de 653 personas por muestreo por conveniencia, de las que finalmente se incluyeron a 493 personas sin enfermedad cardiovascular (ECV) en el análisis. La edad no fue criterio de exclusión. El objetivo primario del estudio fue conocer la existencia o no de correlación entre la estimación del riesgo cardiovascular por los diferentes modelos mencionados, o lo que es complementario, valorar la concordancia y discordancia entre los distintos modelos. De forma secundaria, se estudió la estratificación de nuestra población en riesgo cardiovascular bajo, medio y alto, así como comprobar cómo según que modelo se utilice la población etiquetada como de alto riesgo cardiovascular puede variar sustancialmente. Se estudió la prevalencia de los factores de riesgo cardiovascular, así como de las enfermedades cardiovasculares: cardiopatía isquémica (ECor), enfermedad cerebrovascular (ACV) y enfermedad arterial periférica (EAP). Se estimó el riesgo cardiovascular por los modelos de Framingham-Wilson, SCORE para países de bajo riesgo, REGICOR y DORICA. Se analizó la asociación entre los diferentes modelos (correlación de Spearman), así como la concordancia (conjunta y por pares mediante el índice kappa de Fleiss y el índice kappa de Cohen, respectivamente) y las discordancias entre los distintos modelos (mediante tablas de contingencia).
Resultados:

La mediana de edad de la población fue de 54,5 años cumplidos corregidos. El 62,3% de la población presentó algún grado de obesidad (incluido sobrepeso), sin encontrar personas con desnutrición. El 14,8% era fumadora y el 5,9% diabética. La hipertensión arterial y la dislipemia fue conocida por el 20,7% y 31,7% de la población, respectivamente. La prevalencia de enfermedad cardiovascular en la población seleccionada inicialmente fue del 20,7%, siendo la más prevalente la enfermedad arterial periférica, seguida de la cardiopatía isquémica y la enfermedad cerebrovascular con proporciones del 12,2%, 9,7% y 3,2%, respectivamente. El riesgo cardiovascular medio estimados por los diferentes modelos correspondió al estrato bajo. DORICA fue el modelo que obtuvo mayor prevalencia de riesgo moderado (49,3%). La mejor correlación se muestra entre las tablas de riesgo de REGICOR y DORICA (Rho = 0,955) y la peor entre Framingham y SCORE (Rho = 0,755). La concordancia conjunta entre los modelos fue buena (k = 0,463), presentando diferencias al analizar por pares. La mejor concordancia se obtuvo entre Framingham y REGICOR (k = 0,585) en la población no diabética, mientras que fue entre DORICA y REGICOR para la población diabética siendo tal concordancia excelente (k = 0,848). Respecto a las discrepancias entre los distintos modelos en la población no diabética, observamos que del total de individuos clasificados de alto riesgo por Framingham, hubo discrepancias en el 86,8%, 55,3% y 34,2% respecto a DORICA, REGICOR y SCORE, respectivamente. Tomando a SCORE como referencia, observamos desacuerdo en la clasificación de los pacientes de alto riesgo en el 90,2% y 66,7% con DORICA y REGICOR, respectivamente. Sólo un 20% de los individuos fueron clasificados como de alto riesgo por DORICA y de “no-alto riesgo” por REGICOR.

Conclusiones:

Los resultados obtenidos confirman la alta prevalencia de factores de riesgo cardiovascular en la población española, así como de manifestaciones cardiovasculares que fueron presentados por uno de cada cinco individuos aproximadamente. En términos generales, el riesgo cardiovascular de nuestra población se mantiene en el estrato bajo, al margen de la herramienta que se utilice. Ello justifica plenamente la necesidad de encontrar elementos predictores del nivel de riesgo de la población, a fin de adecuar las intervenciones a dicho nivel de riesgo, que habrá de ser estimado por una herramienta lo suficientemente adecuada a
la población a la que se aplique. La concordancia es mayor en el grupo de individuos de alto riesgo, significando que este grupo es detectado de forma precisa por cualquiera de los métodos. DORICA es el modelo que en un mayor porcentaje (48,9%) clasifica como de riesgo moderado a la población española. Dada la alta correlación entre los modelos españoles, así como la concordancia excelente en la población diabética, es preciso señalar las ventajas de emplear instrumentos para calcular el riesgo cardiovascular que proceden de la misma población a la que se le van a aplicar.
1.- ABSTRACT

Introduction.

Cardiovascular diseases are still leading not only causes of mortality in our countries but they are also an important source of morbidity for our population, establishing as an important Public Health problem.

In the last century, the scientific community joined efforts to achieve predictive statistical models about the cardiovascular risk of the population through methods of logistic regression. The first to be made was the American model, on the population of Framingham, which has constituted the paradigm of the subsequent models. Later, some authors found disagreements when applying this model to different non-American populations (including European population), which led to the conclusion that a different model for the European continent would be needed. This was based on the existence of different distribution in the prevalence of cardiovascular risk factors which constitute the essence of the models. This model was called, by its acronym, SCORE. However, new differences were found years later when the European model was applied to the different European populations, so it was decided to divide the countries according to whether they had high or low cardiovascular risk, making a model for each group. A version of this tool is currently available on the internet, in order to make it more accessible. At the level of the Spanish nation, two models were made with different methodology: REGICOR was made with a specific Mediterranean population (Girona) and DORICA was made collecting data over the prevalence of cardiovascular factors in nine autonomous communities.

There are some differences between variables involved in each model for cardiovascular risk estimation, however, the age, presence or absence of Diabetes Mellitus, the presence or absence of smoking and gender are constant. Some models use the arterial pressure including only the systolic arterial pressure (PAS) and others use the highest value of systolic blood pressure or diastolic blood pressure (PAD). There are also models that allow estimation of cardiovascular risk using cholesterol linked to low-density lipoprotein (c-LDL), rather than total cholesterol.

Despite of the existence of screening tools for the estimation of the individual cardiovascular risk which makes easier to health professionals to decide a preventive intervention over population’s cardiovascular health, nowadays there are still some many doubts about efficacy of each tool when they are applied over different populations. Therefore, it's quite relevance...
of having as effective a model as possible to stratify individuals according to their individual cardiovascular risk. These reasons force us to study and analyse the different options available to know the degree of agreement or disagreement between them when applied to the same population.

Nowadays, there are some studies whose objective was to assess the concordances and discrepancies between some of the previously mentioned models, as well as to evaluate the possible consequences that would arise on the pharmacological intervention to reduce the cardiovascular risk of some samples of the Spanish population, being these studies with samples linked to a health area. However, there are no studies comparing the cardiovascular risk estimation by the four models discussed, and carried out on a sample of the general Spanish population.

Material & Methods.

We performed a cross-sectional descriptive study on general Spanish population, making a selective process at a fairground convention in 2008. A total of 653 individuals were initially selected by sampling for convenience from which 493 people without cardiovascular disease were finally included for data analysis. Age wasn’t an exclusion criterion. The primary aim of the study was to know the existence or not of correlation between the estimation of cardiovascular risk by the different models mentioned, or what is complementary, to assess the concordance and discordance between the different models. Secondarily, we studied the stratification of our population at low, medium and high cardiovascular risk, as well as to verify how according to which model, the population labeled as “having a high cardiovascular risk” can vary substantially. Prevalence of cardiovascular risk factors and cardiovascular diseases (ECV) as myocardial infarction (Ecor), stroke (ACV) and peripheral artery disease (EAP, Spanish acronym), were studied. Individual cardiovascular risk was estimated by each model: Framingham-Wilson, SCORE (low risk countries chart) and the Spanish models (REGICOR and DORICA). The association between different models (Spearman’s correlation), and agreement (within all models and by paired-models with Fleiss’ kappa index and Cohen’s kappa index, respectively) and disagreement (within contingency tables) were also analysed.
Results.

Median age of our population’s sample was about 54.5 corrected years old. We found in 62.3% of the population some obesity grades (including overweight) and no one had malnutrition. Smoking and Diabetes was presented by the 14.8% and 5.9% of the sample. Arterial hypertension and dyslipidemia was known by the 20.7% and 31.7% of the population. The prevalence of cardiovascular diseases in the initially selected population was about 20%, being peripheral artery disease the most prevalent and followed by ischemic heart disease and stroke with proportions of 12.2%, 9.7% and 3.2%, respectively. The mean cardiovascular risk estimated by the different models corresponded to the low stratum. DORICA was the model which obtained the highest prevalence for the moderate risk (49.3%). The best correlation was observed between REGICOR and DORICA models (Rho = 0.955) and the worst between Framingham and SCORE (Rho = 0.755). Agreement between all models was good (k = 0.463), but there were differences when concordance was analysed between paired-models. Best agreement was obtained between Framingham and REGICOR (k = 0.585) in non diabetic population while in diabetic population was excellent between DORICA and REGICOR (k = 0.848). Regarding the discrepancies between the different models in non-diabetic population, we observed that over total individuals classified as “having a high risk” by Framingham, there were discrepancies in 86.8%, 55.3% and 34.2% with respect to DORICA, REGICOR and SCORE, respectively. Taking SCORE as reference, we observed disagreements in 90.2% and 66.7% with respect to DORICA and REGICOR, respectively. Only 20% individuals were classified as high risk with DORICA and as “no-high risk” with REGICOR.

Conclusions.

The obtained results confirm the high prevalence of cardiovascular risk factors in Spanish population, as well as for cardiovascular diseases that were presented by one in five individuals approximately. In general terms, the cardiovascular risk of our population is maintained in the low stratum, regardless of the tool used. This fully justifies the need to find elements that predict the level of risk of the population, in order to adapt interventions to that level of risk which must be estimated by a tool that is adequate enough to population to which it’s applied. The agreement is higher in the group of high-risk individuals, meaning that this group is accurately detected by any of the models. DORICA is the model that in a greater percentage (48.9%) classifies as moderate risk to the Spanish population. Given the
high correlation between Spanish models, as well as the excellent agreement in the diabetic population, it should be noted the advantages of using instruments to calculate the cardiovascular risk from the same population in which it will be applied.
2.- INTRODUCCIÓN.

Aunque es un hecho bien conocido, es preciso recordar que las enfermedades cardiovasculares en nuestro medio siguen siendo la primera causa de morbi-mortalidad. Con distintas variaciones dependiendo del segmento de edad, del género masculino o femenino, y con algunas variaciones geográficas, las enfermedades cardiovasculares se constituyen como un problema médico, poblacional, social y económico.

Sin embargo, y a pesar de esta carga de enfermedad, lo cierto es que la prevención cardiovascular ha resultado útil, sobre todo en lo relativo al manejo de los factores de riesgo para arteriosclerosis. Se ha calculado que aproximadamente un 50 % del beneficio obtenido en los últimos años es debido a un correcto manejo de los principales factores de riesgo, sobre todo en el abordaje farmacológico de los mismos, principalmente en lo relativo a las dislipemias, el control de la presión arterial, o la Diabetes Mellitus. En la práctica los factores de riesgo de origen metabólico, aún estando presentes en intensidad moderada, son los responsables del riesgo cardiovascular que aún sostiene nuestra población y que merecen, por tanto, nuestra atención para su prevención y/o tratamiento.

De ahí el interés fundamental para detectar aquellos individuos en los que una intervención resulte determinante para reducir su riesgo, ya sea aplicando normas relacionadas con el estilo de vida, o abordando un tratamiento farmacológico llegado el caso. En este sentido, una de las estrategias determinantes pasa por la detección temprana de los individuos de alto o muy alto riesgo, en los que estas intervenciones se convierten en cruciales para mejorar su salud cardiovascular y su pronóstico vital.

Resulta hasta cierto punto sencillo detectar a los pacientes con alto / muy alto riesgo cardiovascular debido a una situación previa (por ejemplo enfermedad cardiovascular previa, con síndromes clínicos de cualquier localización: coronaria, cerebrovascular o periférica; o incluso con arteriosclerosis subclínica detectada por diferentes técnicas) o a la existencia de un factor de riesgo de gran intensidad (por ejemplo una Hipercolesterolemia Familiar, o una Diabetes Mellitus con o sin lesiones en órganos diana). Sin embargo, no es tan sencillo detectar a aquellos pacientes que, aparentemente sanos, son portadores de un riesgo alto o muy alto porque muchos de tales individuos lo único que tienen es una agregación de factores de riesgo de intensidad baja o moderada, pero que le confieren un efecto sinérgico aumentando significativamente su riesgo individual. De hecho, muchas de las guías de práctica clínica han puesto en evidencia como la agregación de tales factores de riesgo puede
acompañarse de un elevado riesgo cardiovascular, de lo que es buena prueba la Diabetes Mellitus, el síndrome metabólico o la obesidad visceral.

En la práctica, esto justifica el interés por disponer de instrumentos para la determinación del riesgo cardiovascular global a cada individuo, teniendo en consideración distintas variables condicionantes del mismo. Este interés ha permitido ir desde el clásico trabajo de Framingham, que permitió identificar a los principales factores de riesgo para que conjugándolos pudiéramos disponer de una herramienta de cálculo del riesgo cardiovascular, hasta aquellos instrumentos más recientes como son tablas de riesgo ajustadas a poblaciones especiales y a prevalencia de factores de riesgo en tales poblaciones.

La diferencia entre los distintos instrumentos de cálculo estriba en las variables que son consideradas en cada caso (y que, por tanto, forman parte del modelo), la medida del riesgo que ofrece (morbilidad o mortalidad, y accidentes graves o eventos mortales), y la población de la que proceden los datos cuyo análisis permite disponer del modelo. Este último hecho es considerado de especial trascendencia por cuanto se asume que un modelo o tabla de riesgo será tanto más adecuado a una población si se aplica en aquella de la que se han extraído los datos epidemiológicos de incidencia y prevalencia para fabricarlo. Dicho de otra manera, un modelo extraído de datos norteamericanos puede ser menos sensible y menos específico en población europea; y aún más allá un modelo europeo, puede ser menos sensible y específico para detectar el riesgo cardiovascular si se aplica en países con distinta morbi-mortalidad cardiovascular o prevalencia de factores de riesgo (países de “bajo” o “alto” riesgo).

La importancia de disponer de un modelo lo más efectivo posible para estratificar a los individuos según su riesgo cardiovascular individual obliga a estudiar y analizar las diferentes opciones disponibles para conocer el grado de concordancia o discordancia entre ellas aplicadas a una misma población, lo que nos puede permitir orientar o recomendar en cada caso el método que se ajuste más, según sea su capacidad de discriminación. No hay que ocultar la trascendencia de emplear un método lo más ajustado posible a la población a la que se aplique habida cuenta que la catalogación de un individuo como de bajo, moderado, alto o muy alto riesgo, condiciona –unido a la intensidad de sus factores de riesgo- la necesidad de que sea tratado de una forma o de otra.
3.- ACTUALIZACIÓN DEL PROBLEMA.

Las enfermedades relacionadas con el sistema cardiovascular han liderado las causas de mortalidad global en España desde al menos el año 1980, momento en que se constituye el Instituto Nacional de Estadística (INE) y, por tanto, desde que se tiene registrados los datos de mortalidad en nuestro país.

Tal y como demuestra la figura 1, gracias al avance científico y las políticas de Salud Pública se ha conseguido, no solo evitar su progresión, sino disminuir la mortalidad cardiovascular (línea azul), observando que las muertes por neoplasias (línea marrón claro) se acercan peligrosamente al primer puesto, manteniéndose como la segunda causa de mortalidad global en nuestro país. Sin embargo, es de destacar que hablamos de mortalidad global ya que, tal y como demostraron en el estudio DRECE III (1) con una muestra representativa de la población española, se observó que en el grupo etario comprendido entre los 5 y los 60 años la principal causa de mortalidad fue la neoplásica, si bien es cierto, que la mayoría de la población que fallece cada año pertenece al grupo de población con edad superior a los 60 años de edad en el que la causa más frecuente es la etiología cardiovascular. Según los últimos datos analizados hasta el momento, en el año 2014 fallecieron 395.830 personas en España, de las que 117.393 (29,65%) lo hicieron a causa de enfermedades cardiovasculares (2).

Adaptado de: Instituto Nacional de Estadística (INE).
Si ampliamos nuestro horizonte podemos comprobar que no es un fenómeno local, sino que a nivel de Europa, el problema es constante tanto en números absolutos como en tasas estandarizadas (3).

En cuanto a los países del resto del mundo, encontramos datos parecidos, con las enfermedades cardiovasculares liderando las causas de muerte, sin embargo, es más complicado encontrar datos fiables.

- En referencia a la región panamericana (incluyendo los Estados Unidos de América), se puede estimar que ocurrieron algo más de 5,5 millones de defunciones en el año 2010, de las cuales aproximadamente el 32% (1,8 millones) se debieron a enfermedades relacionadas con el aparato cardiovascular, siendo también las neoplasias la segunda causa de muerte con un 17% de defunciones (cerca de 1 millón de personas) (4).

A pesar de que las enfermedades cardiovasculares lideran las causas de muerte en el mundo, es importante subrayar que tal premisa no tiene el mismo peso en todos los países del planeta, como ya advirtieron a finales de la década de los ochenta en la publicación llevada a cabo por la OMS gracias a su proyecto MONICA (5). En Europa, por ejemplo, tal y como se puede observar en la figura 3, encontramos países con mayor tasa de mortalidad por causa cardiovascular y otros con menores tasas, como son los países nórdicos y los países cercanos al mar Mediterráneo.
Figura 3. Tasas de mortalidad cardiovascular ajustadas por densidad de población en Europa en 2012.

En consonancia con los datos europeos, recientemente se han publicado datos sobre las tendencias en la mortalidad global entre los distintos estados que conforman los Estados Unidos de América entre los años 1980 y 2014 (6). Estos resultados se encuentran en completa armonía con los datos europeos. Como puede observarse en las figuras 4 y 5, la frecuencia de las causas de mortalidad difiere en cuanto a la zona geográfica del continente.

Figura 4. Patrón de mortalidad por causa cardiovascular y neoplásica en EE.UU.
Figura 5. Patrón de mortalidad por causa diabética y accidental en EE.UU.

No obstante, en el esfuerzo por adecuar nuestras intervenciones sobre cada uno de los componentes de la población a la que el clínico tiene acceso, mantener en esta visión continental, o incluso estatal, sería adoptar una visión reduccionista pues, así como encontramos dichas diferencias entre los distintos continentes o estados/países, existen diferencias entre diferentes regiones de un mismo país.

Estos hallazgos epidemiológicos parecen encontrar su fundamento en la variación cultural que condicionan los estilos de vida de las diferentes poblaciones. Es por ello, que las prevalencias de estos factores que componen los hábitos de vida saludable y, por yuxtaposición, los no saludables son diferentes entre algunos países y, más aún, entre regiones de un mismo país.
3A.- ESTIMACIÓN DEL RIESGO CARDIOVASCULAR.

Introducción:

Considerando las conclusiones expuestas en el apartado anterior sobre la globalización y magnitud del problema, parece indiscutible la utilidad y necesidad de la estimación del riesgo cardiovascular como herramienta para imperar en la promoción de hábitos de vida saludables a la toda la población e intervenir en los demás factores de riesgo cardiovascular especialmente en aquellos grupos poblacionales que se beneficien de una reducción de su probabilidad de sufrir un evento cardiovascular (por ser éste alto o muy alto) y, por tanto, mejorar la esperanza y calidad de vida de la población general.

Variables de inclusión:

Durante la segunda mitad de la década de los ochenta se realizó un proyecto multicéntrico y colaborativo, coordinado por la OMS, que constituiría uno de los proyectos más relevantes en el estudio de las enfermedades cardiovasculares y los factores de riesgo asociados. El objetivo del estudio fue analizar la tendencia de las enfermedades cardiovasculares y sus determinantes en distintas poblaciones (en total de 26 países de Europa, Norteamérica y del Pacífico occidental) entre las que incluyeron a España (7). Los resultados del proyecto MONICA se publicaron a principios de los años noventa. En cuanto a los factores de riesgo cardiovascular, observaron que existía una importante variabilidad en la distribución de los factores de riesgo (patrones) entre las diferentes poblaciones, así como que las poblaciones en las que los factores de riesgo se encontrasen en niveles bajos eran una minoría (8). Entre los factores de riesgo relatados se incluyeron: hipertensión arterial, colesterolemia y el tabaquismo.

Por otro lado, es un hecho constatado que el riesgo cardiovascular se ve incrementado a lo largo de la vida, debido a la fisiopatología de la ateroesclerosis que comienza en la infancia (9) y cuyo proceso inflamatorio (10) se va produciendo a lo largo del tiempo, siendo modificado por otros procesos concomitantes que lo pueden agravar y/o acelerar. Es por tanto, que la edad es un factor determinante en la morbimortalidad cardiovascular, por tanto en cuanto una persona de mayor edad tendrá mayor probabilidad de haber tenido mayor tiempo de evolución de ateroesclerosis. Como se comentó previamente, según el estudio
DRECE III, la mayor tasa de eventos mortales se produjo en personas por encima de los 60 años.

En los albores de la preocupación por las enfermedades cardiovasculares se incluyó como factor contribuyente a la Diabetes Mellitus, dado que los individuos con tal condición ven incrementada la probabilidad de sufrir un evento cardiovascular. Sin embargo, en la actualidad la presencia de esta condición es considerada por muchos como la adquisición de un riesgo cardiovascular alto, por lo que no cabría lugar a la duda acerca de las medidas a adoptar en la prevención cardiovascular de estas personas.

Herramientas de estimación:

Desde la última mitad del siglo pasado se han incrementado los estudios para encontrar estas herramientas de estimación a través del uso del método logístico multivariado. Así surgieron los distintos modelos de estimación de riesgo cardiovascular. El primero en confeccionarse, fue el estadounidense, apoyada por una gran cohorte de un pueblo llamado *Framingham*, de quien tomó su nombre. Posteriormente se desarrolló la herramienta europea, llamada por su acrónimo en inglés: **SCORE** (*Systematic COronary Risk Evaluation*). Acotando la muestra a la población española, disponemos de dos herramientas, ambas confeccionadas a partir de la inicial, la estadounidense, mediante adaptaciones: **REGICOR** (acrónimo del catalán: “*Registri GIronès del CORs*”) y **DORICA** (“*Dieta, Obesidad y Riesgo Cardiovascular*”). Estas herramientas se detallan más adelante en nuestro trabajo.

No obstante, existen otras herramientas que nos ayudan a valorar el riesgo cardiovascular individual, como son:

- La obesidad andróide, también llamada central o visceral, medida con el ratio cintura/cadera o el perímetro de la cintura. Existen algunos estudios que han demostrado una correlación buena con el riesgo cardiovascular (11), teniendo en cuenta que la presencia de tal condición conlleva una mayor prevalencia de dislipemia, hipertensión arterial e insulinoresistencia (12-13).

- La ultrasonografía carotídea se ha posicionado como una técnica no invasiva y sencilla en su realización que permite, gracias a la medición de su grosor intima-media y su gran correlación con la histología ateroesclerótica (14) y gran asociación con los factores de riesgo cardiovasculares, identificar la existencia
de enfermedad ateroesclerótica subclínica y es posible que ayude a predecir el riesgo de sufrir futuros eventos tanto coronarios como cerebrovasculares. En un metaanálisis realizado en 2007, los investigadores concluyeron que por cada 0,1 mm de incremento en el grosor intima-media, el riesgo coronario aumentaba entre un 10% y 15%, mientras que el cerebrovascular lo hacía entre un 13% y un 18% (15). Algunos años más tarde se publicó otro metaanálisis en el que se estudió el efecto de la asociación de esta técnica a la estimación del riesgo por los modelos previamente descritos, concluyendo que si bien asociar la medición del grosor intima-media parece que mejora el valor predictivo del riesgo estimado por el modelo de Framingham, SCORE o REGICOR, permanece en controversia si este efecto es clínicamente relevante (16-17), aunque sí parece evidente que los individuos que más se beneficiarían de tal técnica serían aquellos con un riesgo estimado en rango intermedio, en los que no queda claro el balance entre riesgo y beneficio de la intervención farmacoterapéutica.
3B.- MODELO AMERICANO (FRAMINGHAM).

Desde el final del siglo XIX y la primera mitad del siglo XX, la comunidad científica observó un incremento en la mortalidad de la población debido principalmente a enfermedades cardiovasculares, lo cual impulsó a los médicos a profundizar en las causas que conducían a las mismas. A principios del siglo XX, el cardiólogo escocés Sir James Mackenzie planificó y comenzó un estudio epidemiológico en la ciudad de St. Andrews, entre 1919 y 1925, llegando incluso a reportar sus experiencias en el libro “The Basis of Vital Activity by James Mackenzie” (18). Sin embargo, nunca llegó a completarse debido a su fallecimiento.

Entre 1917 y 1923, se fraguó un importante estudio epidemiológico en Estados Unidos sobre la Tuberculosis: “The Framingham Community Health and Tuberculosis Demonstration Study”. El estudio fue financiado por una compañía de seguros, “The Metropolitan Life Insurance Company”, preocupada por el hecho de que 1 de cada 3 muertes en el departamento industrial se debía a dicha enfermedad. Además, la Tuberculosis en aquella época constituía una enfermedad con escasas opciones terapéuticas, por lo que en muchos casos provocaba la muerte del enfermo y en otros alteraciones crónicas que suponían un gran impacto en la población (19). Este estudio fue de suma importancia para la comunidad ya que, gracias a su consecución, se observó que el control en la comunidad de los factores que promueven la enfermedad es factible y efectivo (20). Gracias a los avances en la comprensión de los mecanismos epidemiológicos de las enfermedades infecciosas, al inicio del siglo XX se produjo una disminución en la mortalidad debido a causa infecciosa, tras adoptarse medidas de higiene y gracias al descubrimiento de ciertas vacunas y antibióticos. Concomitantemente se produjo un incremento en la mortalidad por enfermedades degenerativas, incluyendo el sistema cardiovascular.

En 1947, el Servicio de Salud Pública americano diseñó un estudio, en colaboración con la Sociedad Médica de Massachusetts y, posteriormente, el Instituto Nacional de la Salud; para abordar la existencia de factores que se asociaban a las enfermedades cardiovasculares. La ciudad elegida, donde se llevaría a cabo el estudio, fue Framingham (Boston), debido principalmente al precedente de colaboración ciudadana con proyectos de investigación médica, además de otras razones logísticas. De esta manera en el año 1950 comenzaba el “Framingham Heart Study”, que se convertiría en uno de los estudios de mayor envergadura a largo plazo sobre las enfermedades cardiovasculares (21).
Durante las dos primeras décadas, el equipo de investigadores del Estudio de Framingham publicó alrededor de 100 trabajos (figura 6) en los que describieron las asociaciones de diferentes factores con la aparición o aumento en la frecuencia de ciertas enfermedades, sin exclusividad para el aparato cardiovascular (22). Además se consolidaron los principales factores de riesgo de las enfermedades cardiovasculares: edad, sexo, presión arterial sistólica, colesterol, hábito tabáquico, diabetes. Se estimaron diferentes ecuaciones para la estimación del riesgo cardiovascular en base a ellos, la primera de todas en 1967, usando “cuartiles de riesgo” (23).

Figura 6. Artículos publicados por décadas. Framingham Heart Study (6).
Traducido de: Framingham Heart Study.

La población de estudio inicial se fue ampliando con la descendencia de la población inicial, llamando a esta cohorte “Framingham Offspring”, principalmente con el fin de estudiar las diferencias en los factores de riesgo entre las dos generaciones y valorar la presencia de influencia genética y familiar en la determinación de los factores de riesgo. Un análisis preliminar, y por ello interpretado de manera cautelar, fue realizado en el año 1975, en el que se observó un cambio en los hábitos tabáquicos, una reducción media de 5 mm Hg.
en la PAD, así como una disminución del 15% en los niveles de colesterol de las mujeres de la cohorte de *Offspring* respecto a la primera generación (24).

Los avances en el campo del análisis de los datos por parte de Walker y Duncan en el año 1991 (25), momento en que se consideró que los participantes del estudio llevaban un tiempo de seguimiento adecuado (aproximadamente unos 50 años), posibilitaron que Anderson y su equipo publicaran la primera tabla de estimación de riesgo cardiovascular, basada en regresión logística (26). Ésta fue pionera por introducir el colesterol unido a lipoproteínas de alta densidad (c-HDL) como variable predictiva. El modelo permite la estimación del riesgo de desarrollar alguna enfermedad cardiovascular global no fatal (cerebrovascular, coronaria) o fatal (muerte súbita), en un plazo de 5 ó 10 años (*Anexo 1*). Se realizó en pacientes que no habían desarrollado previamente ningún evento cardiovascular, por lo que le permitía ser una estupenda herramienta enfocada a la prevención primaria (27).

Las variables que intervinieron en la estimación fueron:

- **Cuantitativas:** edad (30-74 años), presión arterial sistólica, colesterol total, c-HDL.

- **Categorías (dicotómicas):** sexo (hombre/mujer), hábito tabáquico (si/no), diabetes (si/no) y hallazgos electrocardiográficos compatibles con hipertrofia del ventrículo izquierdo (si/no).

Como cualquier modelo estadístico, estimado sobre una población concreta, debía ser validado para el resto de las poblaciones, como bien indicaron los autores. Además, el modelo inicial servía para predecir la enfermedad cardiovascular global.

En los años siguientes, diferentes investigadores adaptaron el modelo para la estimación de una enfermedad cardiovascular concreta (enfermedad coronaria o cerebrovascular, sobretodo). Además realizaron estudios para evaluar la generalización a otras poblaciones. Así, en 1994 se publicó un trabajo que reportó diferencias en el efecto de algunos factores de riesgo cardiovascular sobre la estimación del riesgo de infarto cerebrovascular, entre la población danesa y la norteamericana (28). A finales de ese mismo año, investigadores franceses hallaron una sobreestimación del 70% del riesgo coronario global a 5 años, calculado con un modelo basado en el modelo de Framingham y tomando como referencia un modelo originalmente realizado sobre población francesa (4% vs 2,8%, respectivamente). Los hallazgos fueron descritos en una muestra de la población gala compuesta, únicamente, por varones con edades comprendidas entre 43 y 53 años. Además
los autores aportaron un ajuste de dicha herramienta que mejoraba la concordancia del modelo basado en Framingham, aumentando la concordancia de la predicción en un 51% (29).

En 1996, precedido por un trabajo de A. Keys realizado en 1984(30), el grupo liderado por A. Menotti demostraron, con un análisis del famoso estudio llamado “Seven Countries Study”, que existe una diferencia en cuanto al riesgo cardiovascular absoluto entre diferentes países, a pesar de que puede existir un riesgo relativo similar. Este análisis fue realizado con 16 cohortes recogidas en 8 países diferentes (Finlandia, Holanda, Italia, Croacia, Serbia, Grecia, Japón y Estados Unidos), con un seguimiento de 25 años (31). Ambos trabajos cambiaron la dirección en la que se basaba la prevención primaria, fundamentándola desde entonces en el riesgo absoluto de la población.

En esa línea continuaron los trabajos, afanados por demostrar su riesgo cardiovascular absoluto y evaluar las discordancias con el riesgo estimado por las ecuaciones de Framingham. Gran Bretaña, Francia, Italia, Alemania y Suiza (32-36), todos ellos corroboraron los hallazgos reportados previamente e incluso algunos proporcionaron una calibración de la herramienta original, adaptadas a las poblaciones específicas.

Incluso continúan en la actualidad ya que hace apenas unos años, en el siglo XXI, se han reportado resultados similares en población del Oriente Medio (37).

Tabla por categorías (Wilson, 1998)

La década de los años 70 estuvo marcada por un interés enorme en el campo de la Hipertensión Arterial (HTA). Gracias, en parte, al asentamiento de la HTA como una enfermedad cardiovascular *per se*, y a ser considerada como un factor de riesgo para el desarrollo de otras enfermedades cardiovasculares (como bien ilustraron los resultados del estudio Framingham y corroboraron otros estudios contemporáneos). En 1972 se consagró el “National High Blood Pressure Education Program”, organismo que pretendía concienciar a la población y profesionales sanitarios sobre la importancia en materia de salud que aportaba prevenir y manejar de forma adecuada esta condición.

Todo ello condujo a que durante 2 años, de 1975 a 1976, se reunieran por primera vez un conjunto de representantes de diversas organizaciones médicas (“Joint National Committee” [JNC]) para elaborar directrices hacia el control de la HTA a través de programas
comunitarios de recomendaciones, manejo sistematizado y procedimientos de evaluación simplificados (38).

Asimismo, a finales de la 8ª década del siglo pasado, se conocía fehacientemente la relación existente entre los niveles sanguíneos de colesterol total y la ateroesclerosis, cuyo proceso estaba ligado con los hábitos alimentarios y factores genéticos de la población, particularmente en la infancia y comienzo de la edad adulta. Por ello, en el año 1988 se congregó un grupo de expertos para consensuar recomendaciones generales (estilo de vida, educación nutricional, hábito tabáquico, etc….) en la población general durante la infancia y juventud, así como el asesoramiento individual y el manejo terapéutico de la hipercolesterolemia. Surgió así el Panel de Expertos del Programa de Educación Nacional sobre el Colesterol (National Cholesterol Education Program Expert Panel [NCEP]) (39).

Dado que las enfermedades coronarias continuaban siendo los protagonistas principales de las causas de muertes a finales del siglo XX, y dada el mayor conocimiento que la comunidad científica disponía sobre el problema, los investigadores del estudio de Framingham pulieron la herramienta de estimación previa, dotando a los profesionales sanitarios de una herramienta más simple, con el fin de mejorar el asesoramiento preventivo y la individualización del tratamiento en la población general.

Para ello, construyeron una nueva tabla a partir de la población inicial y de la segunda generación, excluyendo aquellos pacientes que estuvieran en tratamiento farmacológico antihipertensivo, hipolipiemiante, así como a las mujeres postmenopáusicas que estuvieran recibiendo terapia estrogénica sustitutiva. Además, decidieron no introducir la historia familiar para enfermedad coronaria, la obesidad y la actividad física como factores de riesgo, pues se pensaba que su contribución a la enfermedad cardiovascular era secundaria, relacionándose con los principales factores de riesgo cardiovascular. Esta nueva herramienta contó con la particularidad de introducir las categorías propuestas por la JNC-V (40) y NCEP ATP-II (41-42) en las siguientes variables: presión arterial, colesterol total y c-LDL. A continuación se exponen los factores de riesgo incluidos en el modelo final:

- Cuantitativas: edad (30-74 años).
- Categóricas: sexo (hombre/mujer), hábito tabáquico en los 12 meses previos (si/no), hipertensión arterial (4 categorías), colesterol total (4 categorías), c-LDL (3 categorías), c-HDL (3 categorías), diabetes (si/no).
El modelo de Wilson permite la estimación del riesgo de desarrollar alguna enfermedad coronaria fatal (muerte por causa coronaria) o no fatal (SCASEST, SCACEST), en un plazo de 10 años (Anexo 2). Además de forma similar al modelo previo de Anderson, constituye una herramienta enfocada de una manera más concienciada a la prevención primaria, dado que permite calcular el riesgo relativo para cada individuo, pudiendo relacionar su riesgo cardiovascular con el de una persona de bajo riesgo para la misma edad y género (43).

Con el fin de poder aplicar esta herramienta a toda la población, los investigadores del estudio de Framingham realizaron un estudio de validación para diferentes grupos étnicos (44). En él encontraron una predicción aceptable para hombres y mujeres de raza blanca y negra. Sin embargo, lo más destacable fue la existencia de sobreestimación en el riesgo cardiovascular a 5 años en hombres japoneses (que vivían en Norte América) e hispanos, así como mujeres americanas nativas. No obstante, en el mismo estudio realizan una nueva calibración del modelo teniendo en cuenta las diferentes prevalencias de factores de riesgo y las tasas subyacentes de desarrollar enfermedad coronaria, con resultados satisfactorios.

Tras disponer de dichos conocimientos, los demás grupos de investigadores calibraron la función para adaptarla a las características de sus poblaciones. Así, en España, el equipo de J. Marrugat realizó la calibración de dicha tabla en el año 2003 (45), para países de bajo riesgo cardiovascular (área del Mediterráneo). Posteriormente se realizó un estudio de validación (Estudio VERIFICA) (46). Más recientemente, un grupo de investigadores de la Comunidad de Navarra, han realizado una calibración del modelo basándose en las características de su propia cohorte, para disponer de una herramienta más individualizada (Estudio RICORNA) (47).

Nuevas Tablas (D’Agostino, 2000)

A medida que se disponía de mayor información, los investigadores fueron observando que las enfermedades cardiovasculares poseían unos perfiles de factores de riesgo, ligeramente diferentes entre ellas, aunque con un núcleo común a todas ellas, de tal forma que al realizar prevención sobre una, se estaría evitando de igual manera el desarrollo de las demás(48). Asimismo se tomó en consideración las relaciones halladas entre las enfermedades cardiovasculares y otros factores de riesgo como los triglicéridos (49-50) y el consumo de alcohol (51-53).
El trabajo de D’Agostino publicado en la revista científica “American Heart Journal” en el año 2000 (54) realiza varias aportaciones importantes en este campo. No sólo se mejoraron las funciones para hombres y mujeres sin enfermedad cardiovascular previa (Anexo 3A) sino que, por primera vez, el estudio de Framingham ofrecía modelos para pacientes de ambos sexos que ya habían padecido alguna entidad cardiovascular, abriendo las puertas a la estimación del riesgo en prevención secundaria (Anexo 3B). Además, lejos de estimar el riesgo a largo plazo, se centran en evaluarlo a corto plazo, entre 1 y 4 años.

Las variables utilizadas para la estimación diferían ligeramente según el género de la persona o paciente y el tipo de prevención:

Prevención primaria:
Género masculino:
- Cuantitativas: edad (35-74 años), colesterol total y c-HDL.
- Categóricas: diabetes (sí/no), tabaco (sí/no), presión arterial sistólica (tratada/no tratada).

Género femenino:
- Cuantitativas: edad (con menopausia/sin menopausia), colesterol total y c-HDL.
- Categóricas: diabetes (sí/no), tabaco (sí/no), presión arterial sistólica (tratada/no tratada), consumo de alcohol (2 categorías: 0-4 ó 6-40 onzas/semana).
- En el caso de las mujeres existen dos modelos en función de si se toma en consideración los triglicéridos o no.

Prevención secundaria a 2 años (tras ECor ó ECV):
Género masculino:
- Cuantitativas: edad (35-74 años), colesterol total y c-HDL.
- Categóricas: diabetes (sí/no).

Género femenino:
- Cuantitativas: edad (35-74 años), presión arterial sistólica, colesterol total y c-HDL.
- Categóricas: diabetes (sí/no), tabaco (sí/no).
Este reciente modelo está en consonancia con las nuevas maneras de pensamiento acerca de las enfermedades y su manera de prevenirlas, debiendo individualizar cada vez más las pautas de actuación hacia cada persona, sana o enferma.

Debido a la naturaleza de estas funciones, sobretodo en cuanto a la prevención secundaria, han sido de gran utilidad en la valoración del riesgo cardiovascular en estudios experimentales con diversas terapias intervencionistas, tanto farmacológicas como no farmacológicas (55-56).
3C.- MODELO EUROPEO (SCORE).

Tras la publicación de la tabla original de Framingham (Anderson) en 1991 y teniendo en cuenta los avances surgidos en los años siguientes, en 1994 se reunieron por primera vez miembros de la Sociedad Europea de Cardiología (ESC), la de Arteriosclerosis (EAS) y la de Hipertensión (ESH). Se elaboraron unas guías europeas, basadas en las guías previamente redactadas por la OMS y la Sociedad Internacional de Hipertensión en el año 1993 (57), que lejos de ir valorando los factores de alto riesgo cardiovascular de forma individual, se centraran en la multifactorialidad de la enfermedad cardiovascular, valorando el riesgo total como la combinación de los mismos. Además tal y como versan las recomendaciones, “lejos de ser una guía más con ligeras diferencias respecto a las previas, resumieran los aspectos más importantes desde el punto de vista clínico e ilustraran gráficamente la tabla original de Anderson, para facilitar el manejo médico” (58). Para ello, adaptaron la ecuación sugerida por Anderson a un método gráfico que visualmente facilitara la estimación de riesgo absoluto a 10 años. Surgieron así las primeras tablas europeas, inicialmente para pacientes sin antecedentes de enfermedad cardiovascular (prevención primaria). Se adoptaron una serie de simplificaciones en cuanto a las variables utilizadas para la estimación del riesgo:

- Uso del nivel de colesterol total, en lugar de c-LDL o razones entre c-HDL y colesterol total
- Redondeo de los niveles de colesterol a la cifra entera más cercana.
- Uso de la PAS en lugar de la PAD.

En 1998 tuvo lugar la segunda reunión del grupo, incluyendo miembros de la Sociedad Internacional de Medicina del Comportamiento (ISBM), Sociedad Europea de Medicina General y Medicina de Familia (WONCA Europe, siglas en inglés), así como la Red Europea del Corazón (EHN, siglas en inglés). En ella, revisaron las recomendaciones publicadas previamente, modificando las tablas de estimación previas para personas sanas (Anexo 4A) y desarrollando unas directrices tanto en el campo de la prevención primaria como en la prevención secundaria, que explicaban las ventajas de la implementación de programas de cribado del riesgo para pacientes asintomáticos y el desarrollo de programas de rehabilitación para pacientes con enfermedad cardiovascular establecida (59). Además, en esta segunda versión, diseñaron tablas de prevención primaria dedicadas a paciente diabéticos (Anexo 4B).
Conforme pasaron los años y se ampliaban los conocimientos sobre la estimación del riesgo cardiovascular, gracias a los estudios que tuvieron lugar en los últimos años de siglo XXI, surgieron problemas en relación a las tablas de la *Second Joint Task Force*, en un aspecto fundamental: su aplicabilidad o validez externa. Tal y como se ha comentado en este trabajo con anterioridad, existen varios aspectos que dificultaron la validez externa de la ecuación de Framingham: la realización de los estudios de Framingham en población exclusivamente norteamericana, la utilización de una definición no universal hacia “evento no fatal/mortal” como objetivo en los estudios y, además, la dificultad para usar datos locales para realizar el ajuste del modelo a las poblaciones individuales. (60-61)

En este contexto, nació el proyecto SCORE, que intentaría “*desarrollar un sistema de estimación del riesgo para la práctica clínica en Europa, en conjunto con la Third Joint Task Force*”, estructurado en 3 pasos:

1. El desarrollo de unas tablas en formato papel para países de alto y bajo riesgo cardiovascular.

2. El desarrollo de métodos para la creación de tablas nacionales y regionales basadas en los datos de mortalidad locales.

3. La integración de la estimación del riesgo en una aplicación informática de gestión de factores de riesgo cardiovascular.

El primer paso se concluyó años más tarde, en 2003, momento en que la Sociedad Europea de Cardiología (ESC) publicó las guías europeas para la prevención de la enfermedad cardiovascular fruto de la colaboración de otras 7 sociedades internacionales y algunos expertos en la materia, que tuvo lugar en la tercera reunión (“*Third Joint Task Force*”). Aseveraron que la estimación del riesgo usando SCORE podía ser fácilmente adaptada a las diferentes prevalencias de los factores de riesgo, recursos y prioridades, teniendo en cuenta la heterogeneidad de la mortalidad cardiovascular entre las poblaciones europeas. Intentando subsanar las carencias en cuanto a la validez externa de las guías anteriores, disgregaron la estimación del riesgo en dos grandes grupos: países con alto riesgo y países con bajo riesgo (entre los que incluyeron a España). Además resaltaron la importancia de la estimación de los pacientes con alto riesgo que aún no había sufrido eventos cardiovasculares, entre los que continuaba siendo fundamental el control de los factores de riesgo de forma continuada para disminuir la carga que suponían este conjunto de enfermedades en la mortalidad europea (62).
Las variables utilizadas para la estimación son los mismos tanto para los países de alto riesgo, como para los de bajo riesgo cardiovascular:

- **Variables cuantitativas:** PAS (medida en mmHg) y colesterol total (medida tanto en mg/dl como en mmol/l).

La clasificación del riesgo estimado se define según los siguientes estratos:

- < 3%: Riesgo bajo
- ≥3% - <5%: Riesgo moderado
- ≥5%: Riesgo alto

Inicialmente se dispuso de diferentes tablas de estimación según las combinaciones que se pueden realizar con las variables Sexo y Diabetes Mellitus. Sin embargo, posteriormente se decidió que los pacientes con DM tipo 1 y microalbuminuria, así como los paciente con DM tipo2, debía ser considerados como pacientes de alto riesgo cardiovascular. Las tablas vigentes de estimación del riesgo por SCORE se muestran en el ANEXO 4C.

El segundo paso que, en nuestro país, se ha fraguado en los últimos años se ha conseguido siguiendo la recomendaciones de la tercera reunión de sociedades científicas. En 2004, el Comité Español Interdisciplinario para la Prevención Cardiovascular (CEIPC), formado por representantes de 11 sociedades científicas involucradas en la prevención cardiovascular, publicó la “Adaptación Española de la Guía Europea de Prevención Cardiovascular”, un documento en el que se resume y traduce la guía europea, además de dar una serie de consideraciones referentes a la población española.

Más tarde, un grupo de investigadores españoles liderados por Susana Sans (63) confeccionaron las tablas de estimación del riesgo adaptándolas a la población española (Anexo 4C), teniendo en cuenta los riesgos de mortalidad por enfermedad cardiovascular a 10 años en función de la prevalencia por sexo y género de los factores de riesgo en la población española, con ayuda de los datos recogidos en años anteriores en el estudio MONICA-Cataluña (64-65).

Por último, el tercer paso consistió en la creación de una herramienta informática para ayudar a los profesionales clínicos a disponer de las herramientas adecuadas para la estimación de riesgo cardiovascular en un soporte que no dependiera de la interpretación de
las tablas en formato físico. La ESC y la EACPR (una rama de la misma) pusieron a nuestra disposición esta ayuda interactiva en internet (66), con posibilidad o bien de usarla directamente en el explorador de internet, o bien de descargarla en nuestro dispositivo para usarlo sin conexión a internet (ver figura 7).

Figura 7. Página web principal de la herramienta HeartScore®, versión europea.
http://www.heartscore.org/Pages/welcome.aspx

Posteriormente esta herramienta ha sido adaptada a diferentes poblaciones (en consonancia con la adaptación de las tablas de estimación), estando disponible para los siguientes países: Alemania, Bosnia y Herzegovina, Croacia, Chipre, Eslovaquia, España, Estonia, Federación rusa, Francia, Grecia, Polonia, República Checa, Rumanía, Suecia, Turquía. En la figura 8 se muestra la página web dedicada a la población española(67).
Figura 8. Página web principal de la herramienta HeartScore®, versión española.
http://www.heartscore.org/es/spanish/Pages/Welcome.aspx
TRASLADANDO EL PROBLEMA REFERENTE A LAS ENFERMEDADES CARDIOVASCULARES EN NUESTRO PAÍS, LA SITUACIÓN EN EL SIGLO XX NO FUE MUY DIFERENTE A LA ACONTECIDA EN EL RESTO DEL MUNDO. DE MANERA DESTACADA, A FINALES DE LOS AÑOS 70 SURGIÓ UN GRUPO DE INVESTIGADORES EN LA COMUNIDAD AUTÓNOMA DE CATALUÑA, MÁS CONCRETAMENTE EN LA PROVINCIA DE GERONA, QUE CENTRARON SUS ESFUERZOS EN EL ESTUDIO DE ESTE CAMPO.

Inicialmente advirtieron que en la mayoría de los estudios realizados hasta el momento se hacía mención a la mortalidad global por enfermedad cardiovascular, más concretamente en la mortalidad específica por infarto agudo de miocardio (IAM). Realizaron una revisión bibliográfica disponible hasta la fecha y se percataron de que a pesar de haber disminuido la mortalidad por IAM dentro de los hospitales, la incidencia de esta entidad (medida por tasa de ingresos hospitalarios) continuaba sin gran variabilidad. De ahí surgió el objetivo de su estudio principal: realizar un registro de IAM en una zona concreta de España (región noreste) durante 2 años (1990-1992) a través del cual se pudiera medir la magnitud de esta patología: su incidencia, su mortalidad y su tasa de infartos (68). Es lo que denominaron: el Registro Gerundense del Corazón (Registri Gironès del Cors, en catalán), del que finalmente saldría el acrónimo REGICOR.

A pesar de que se habían realizado algunos estudios que evaluaron la distribución de los factores de riesgo en algunas regiones españolas, debido a la inexistencia de una metodología estandarizada, era muy difícil comparar dichos resultados e inferir hipótesis a partir de ellos. Un grupo de investigadores del REGICOR realizaron un estudio en Gerona asentando las bases metodológicas para futuros trabajos. Además, en ese trabajo de campo vieron una magnífica oportunidad para valorar la concordancia entre la incidencia de IAM y la prevalencia de los factores de riesgo en dicha zona (69). Así, sorprendentemente los resultados del estudio demostraron que a pesar de existir una elevada prevalencia de los factores de riesgo, la incidencia y la tasa de muertes por infarto de miocardio en Gerona permaneció en rangos más bajos que en otras regiones en las que existían diferencias en la prevalencia de los FRCV. Un ejemplo, mencionado por los propios autores, fue Minnesota (EE.UU.) donde se reportaban tasas de incidencia y mortalidad entre 4 y 5 veces superiores a las de Gerona, presentando prevalencias de factores de riesgo ligeramente menores. Los autores enfatizaron sobre la necesidad de profundizar en el conocimiento de posibles factores...
protectores hacia la enfermedad cardiovascular, teorizando sobre la posible contribución que podría tener la mayor prevalencia del ejercicio físico entre los gerundenses y otros factores que podrían compartir países mediterráneos teniendo en cuenta los trabajos publicados por investigadores franceses unos años atrás (70-71).

Tras los primeros trabajos descritos previamente, como en todo proceso metodológico de investigación científica, surgía la necesidad de encontrar una herramienta que permitiera estimar el riesgo cardiovascular de la población gerundense de manera eficaz. Para ello en el año 2003 realizaron, conjuntamente con algunos investigadores del grupo de Framingham, una adaptación del modelo creado en el estudio de Framingham (72).

Durante los siguientes años, al igual que ocurrió en tiempo pasado con los modelos precedentes americano y europeo, surgieron grupos de investigadores que realizaron trabajos dirigidos a valorar la utilidad de dicho modelo en distintas poblaciones. En el año 2005, el equipo de Joan Cristóbal publicó un estudio de comparación del riesgo entre la escala de Framingham-Wilson y la de REGICOR en paciente con dislipemia (que se detallará más adelante), concluyendo en la sobreestimación del riesgo cardiovascular por el modelo americano y la necesidad de utilizar modelos ajustados a la población española (73). Unos años más tarde, el equipo del Dr. Buitrago realizaron un estudio observacional retrospectivo, con una cohorte de la población de Badajoz de la que excluyeron los paciente diagnosticados de Diabetes Mellitus, en el que compararon el riesgo estimado según los modelos de Framingham y el resultante tras la adaptación: REGICOR (74). Según los resultados publicados apreciaron una sobreestimación del riesgo a 10 años (de acuerdo a otros trabajos previamente publicados) del 73% según el modelo de Framingham y, sin embargo, una infraestimación del 64% según el modelo catalán. Además observaron que el perfil de las personas que eran catalogadas como de “alto riesgo cardiovascular” eran diferentes según se usara uno u otro modelo, algo que es de destacar dada la implicación que conllevaría para el inicio de tratamiento preventivo.

El investigador Jaume Marrugat y su equipo publicaron dos estudios acerca de la validez de la adaptación de la ecuación de Framingham a la población española (REGICOR). El primero, el estudio VERIFICA, fue publicado en 2007. En él, realizaron la validación de la estimación de riesgo coronario a 5 años con participantes del estado español pertenecientes a dos cohortes: una retrospectiva en la que participaron 67 centros de salud de toda España, y otra prospectiva de la población general (46). El otro estudio se publicó entre el año 2010 y 2011, tomando como referencia a una cohorte del registro (REGICOR) y realizando un
seguimiento entre los años 2006 y 2009. En él, pudieron objetivar que el modelo era adecuado para estimar el riesgo cardiovascular medido como la incidencia de eventos coronarios (para el cual fue creado) y reflexionaron sobre las diferencias que pudieran observarse en la aplicación de dicho modelo en otras regiones del territorio español, atribuyéndolas a que la incidencia de dicha patología era mayor en las regiones en las que presentaba mayor diferencia (75). Además simplificaron la clasificación del riesgo estimado según los siguientes estratos:

- < 5%: Riesgo bajo
- 5%-9.9%: Riesgo moderado
- 10-14.9%: Riesgo alto
- >15%: Riesgo muy alto

El modelo se encuentra estratificado según la variable categórica Sexo y “Diabetes Mellitus”, existiendo tablas para la estimación de hombre y mujeres diabéticos y no diabéticos. Las variables que incluye este modelo se detallan a continuación:

- Variables categóricas: Diabetes Mellitus (dicotómica). Edad (en años, con los siguientes rangos: 35-44; 45-54; 55-64; 65-74). Tabaquismo (dicotómica).
- Variables cuantitativas: PAS y PAD (medidas en mmHg), colesterol total (medido tanto en mg/dl como en mmol/l) y c-HDL (medido en mg/dl).
Sin embargo, el modelo del estudio REGICOR presentaba algunas limitaciones en la extrapolación de la estimación del riesgo a la población española. En este modelo, se encontraron discrepancias en la incidencia de eventos coronarios comparados con la estimada en la población española en su conjunto, por lo que infraestimaba el riesgo cardiovascular en población no gerundense. Algunos autores llegaron a afirmar que más del 50% de la población femenina y más del 90% de la población masculina de Girona presentaban un riesgo coronario a 10 años infraestimado, con las tablas sin adaptar.

El estudio DORICA (Diabetes, Obesidad y Riesgo Cardiovascular) se llevó a cabo a partir de un conjunto de datos configurado por estudios epidemiológicos nutricionales y de factores de riesgo de carácter transversal, realizados entre 1990 y 2000 sobre muestras aleatorias representativas de la población española entre las que participaron 9 comunidades autonómicas: Andalucía, Baleares, Canarias, Cataluña, Galicia, Madrid, Murcia, País Vasco y Comunidad Valenciana. Participaron un total de 14.616 personas no institucionalizadas de edades comprendidas entre los 25 y los 64 años de edad. A través de los conjuntos de datos obtenidos de cada participante se calculó la edad media de la población española, así como la prevalencia de los factores de riesgo en España, para conjuntamente con la estimación de la tasa de acontecimientos coronarios en España extraída del estudio IBERICA (Investigación, Búsqueda Específica y Registro de Isquémica Coronaria Aguda), calibrar la ecuación de Framingham. El objetivo en la consecución de dicho estudio radica en la proposición de un modelo para la estimación del riesgo coronario global a 10 años en la población española, contemplando la prevalencia de los factores de riesgo y la tasa de acontecimientos coronarios estimada, como se ha comentando previamente (76).

Lejos de parecer que se llevó a cabo otro modelo para el territorio español, los investigadores del grupo DORICA (77) se fundamentaron en varios conceptos metodológicos:

1. La necesidad en disponer de una herramienta para la estimación del riesgo cardiovascular para una región concreta y de cimentarla sobre las características más próximas a la región en la que ha de aplicarse. Este modelo debería de ser idealmente derivado de estudios realizados en la misma población a la que ha de aplicarse (78). Por ello, consideraron la realización de su estudio con la aportación de datos recogidos en distintas zonas del territorio.
español y no solamente de una región concreta (como es el caso del estudio REGICOR).

2. El modelo se fundamente en las fracciones de riesgo atribuibles a cada factor de riesgo en la población española.

3. Dado que España es un país con unos niveles medios de c-HDL elevados, resultaba imprescindible la ponderación de forma aislada del riesgo cardiovascular según dicho factor. Ello lo diferencia respecto al estudio SCORE.

4. Se realizó un modelo específico para la población diabética, teniendo en cuenta que en aquella época aunque estaba en entredicho si se consideraba dicha condición como equivalente de cardiopatía isquémica.

5. Se elevó a 20% la condición de riesgo cardiovascular alto, más cerca de los niveles internacionales.

Las variables recogidas en el estudio DORICA que finalmente formaron parte del modelo de estimación son las siguientes:

- Variables cuantitativas: edad, presión arterial (en mmHg), colesterol total (en mg/dl), c-HDL (en mg/dl)
- Variables categóricas: tabaquismo (dicotómica), presencia de Diabetes Mellitus (dicotómica), sexo (masculino/femenino).

Sin embargo, el estudio DORICA tampoco está exento de limitaciones. Al igual que sus predecesores (con excepción del estudio Framingham) la principal limitación radica en el tipo de diseño que utilizaron, por tratarse de datos de carácter transversal, así como de ser una base de datos conjunta a partir de estudios diferentes (aunque a su favor cuentan con una metodología similar que hace que puedan ser comparables y, por tanto, analizados en conjunto).
4.- COMPARACION ENTRE LOS DISTINTOS MODELOS PARA LA ESTIMACIÓN DEL RIESGO CARDIOVASCULAR.

Teniendo en cuenta, por tanto, como se ha expuesto previamente las diferentes herramientas de las que disponemos es necesario el mayor acercamiento posible al verdadero riesgo cardiovascular individual, ya que de no conseguirlo, la estimación de un riesgo cardiovascular erróneo tendría importantes consecuencias para la población:

a) Un riesgo cardiovascular infraestimado conllevaría a una menor población susceptible de medidas intervencionistas de la que realmente se beneficiaría, lo que implicaría un aumento teórico de la mortalidad o, al menos, un estancamiento en la reducción de muertes por causas cardiovasculares.

b) Por el contrario, un riesgo cardiovascular sobreestimado conllevaría a una mayor población susceptible de medidas intervencionistas que no se traduciría en beneficios para dicha población, lo que ocasionaría efectos tanto para la población intervenida como para el resto de la población: mayor gasto en tratamientos (tanto el gasto individual como el gasto colectivo en países con financiación estatal de medicamentos) que se traduciría en un aumento de los impuestos para asegurar el mantenimiento del Sistema Nacional de Salud (con las implicaciones que ello podría tener en la salud de los grupos con nivel socioeconómico menor, tal y como comprobaron Keil JE et al) (79), mayor probabilidad de tener efectos secundarios por tratamientos innecesarios que violarían el príncipe de ética médica “Primum non nocere” y que, además, podrían conllevar un deterioro en la relación médico-paciente y, por tanto, una mayor desconfianza en el sistema que, en su conjunto, se traduciría en un aumento en la mortalidad global.

Este hecho ha propiciado que se hayan realizado estudios con el objetivo de dilucidar que herramienta es la más adecuada para la población española.

A continuación se detallan los diferentes estudios comparativos entre las diferentes tablas de estimación del riesgo en la población general española.
FRAMINGHAM vs SCORE

Consideraciones

La primera diferencia a destacar entre ambos modelos es el origen diferente de la población sobre las que se basaron, tanto en cuanto a región (americana vs europea) como en cuanto a incidencia de eventos cardiovasculares. La segunda se basa en el concepto que miden sus resultados ya que mientras Framingham mide probabilidad de sufrir evento coronario y muerte coronaria a 10 años, SCORE valora la probabilidad de muerte por causa cardiovascular a 10 años. Además hay que recordar que no existen tablas de SCORE para personas diabéticas, considerándolas de alto riesgo. Es por ello, sobre todo por la segunda razón, por la que no es posible comparar un modelo con el otro, dado que no miden lo mismo.

Estudios comparativos

Tras la publicación de las recomendaciones por la “Third Joint Task Force” de utilizar el nuevo modelo europeo SCORE, algunos investigadores españoles denunciaron la implantación del nuevo modelo sin conocer las consecuencias que pudieran derivarse para la población española (80). En su trabajo, presentaron los datos comparativos entre el riesgo estimado por la ecuación de Framingham-Anderson (1991) y la de SCORE (para países de bajo riesgo) de una muestra final de 1227 personas, con edades comprendidas entre los 30 y 75 años y excluyendo a personas que presentaran DM o alguna manifestación cardiovascular. La concordancia entre ambos modelos fue alta (K = 0,71) para personas con riesgo cardiovascular alto, presentando los casos discordantes un riesgo cardiovascular por Framingham alto (con SCORE no alto) en un 88,9% y en la dirección contraria el 11,1%. En su estudio concluyen que la apuesta por el modelo SCORE se traduciría en dos puntos: a) considerar a una población con riesgo alto (no considerada por Framingham) que en su mayoría serían mujeres, de edad avanzada, hipertensas, no fumadoras con colesterol total moderadamente alto y b) no considerar como población de alto riesgo (que sí sería considerada por Framingham) a una muestra en su mayoría masculina, con edad media de 60 años y con colesterol total alto. Estos resultados, además, tendrían repercusión sobre la intervención farmacoterapéutica a realizar consecuentemente, ya que sobre el grupo correspondiente al primer punto (punto a), no habría suficiente evidencia para iniciar tratamiento hipolipemiante.
Debido al hecho constatado de que la estimación del riesgo por el modelo de Framingham presenta unos resultados al alza en la población europea con baja incidencia de muerte cardiovascular (donde se encuentra la población española) se esperaba que el modelo con cohortes europeas (SCORE) presentara menor población con alto riesgo cardiovascular y, por tanto, menor indicación para la intervención terapéutica. No obstante, en el trabajo realizado por integrantes de la Unidad de Ateroesclerosis del Hospital Carlos III de Madrid (81), se comprobó como paradójicamente SCORE determinó una mayor proporción de personas con riesgo alto en la población masculina (entre 60 y 79 años de edad) comparado con la ecuación de Framingham (44,4% vs 16,7%) lo que correspondía a una razón de prevalencias de 2,8 veces. Más aún, teniendo en consideración que debido a la edad de la población el riesgo estaría infraestimado al asumir el riesgo perteneciente a edades inferiores, estos hallazgos serían más notables.

Un trabajo coetáneo fue llevado a cabo en el norte del país, en Asturias, reclutando a 379 participantes, únicamente del género masculino, de edades comprendidas entre 45 y 65 años, sin DM conocida ni manifestaciones cardiovasculares previas (82). La prevalencia de riesgo alto por Framingham-Anderson fue del 24% (IC95%: 19,9% - 28,7%), mientras que para SCORE fue del 17,9% (IC95%: 14,3% - 22,3%), siendo las diferencias estadísticamente significativas. El análisis por subgrupos de edades comprobó como la prevalencia de riesgo alto por Framingham fue mayor que con SCORE sobretodo en personas menores de 58 años y fumadoras, mientras que SCORE presentaba prevalencias de riesgo alto mayores a Framingham en población mayor de 60 años. Estos resultados estuvieron en consonancia con los estudios previos y sugiriendo que deberían esperar a disponer de resultados de los nuevos modelos desarrollados en la población española: REGICOR y DORICA.

En 2006 se publicó otro trabajo, con la peculiaridad de haberlo realizado en personas predominantemente hipertensas (83). El estudio dirigido por C. González y llevado a cabo por la Unidad de Hipertensión del Hospital de Sagunto (Valencia), compuesto por una muestra de 929 pacientes en seguimiento, en el que objetivaron una concordancia muy baja en los pacientes considerados de alto riesgo por Framingham-Wilson y SCORE. En su muestra, la mediana de riesgo por Framingham fue de 4% (IQR: 8%) y por SCORE de 1% (IQR: 1,5%). De los 52 pacientes
considerados de alto riesgo por uno u otro modelo, solo hubo concordancia en el 13%, obteniendo un índice Kappa de 0,19. Entre las características diferenciales entre los discordantes, apreciaron que los que presentaban riesgo alto para SCORE y no para Framingham eran pacientes de mayor edad, mejor perfil lipídico y con menos frecuencia de tabaquismo.

Conclusiones:

1. El riesgo estimado por ambos modelos no es comparable, dado que no miden lo mismo. Sin embargo, si es posible medir la prevalencia del riesgo alto y su concordancia, lo que se traduciría en cambios en la intervención terapéutica.

2. Framingham sobreestimaría el riesgo en la población de menos de 60 años, sobretodo en mujeres, hipertensas, no fumadoras y con colesterol total moderadamente alto, mientras que SCORE sobreestimaría el riesgo en la población avanzada, predominantemente en varones, no fumadores y con colesterol total alto (precisamente en los que mayor evidencia se dispone de beneficio por intervención).

FRAMINGHAM vs REGICOR

Consideraciones

Ambos modelos estiman el riesgo coronario a los 10 años, medido como la probabilidad de presentar un infarto de miocardio fatal o no fatal o algún tipo de angina, lo que hace que sus resultados puedan ser comparables.

Estudios comparativos

Tras la publicación de la calibración de Framingham para la población española realizada por los investigadores de los estudios REGICOR y que fue validada con las adaptaciones locales de la ecuación original de Wilson, el investigador principal, Jaume Marrugat, y su equipo realizaron una comparación entre los mencionados modelos utilizando dos muestras de la población gerundense (84). En el estudio participaron dos muestras de la población inicial de REGICOR de dos años diferentes, 1995 y 2000, con una muestra de 3270 individuos tras excluir a las personas con menos de 35 años, más de 74 años, antecedentes de cardiopatía isquémica y tratamiento hipolipemiantes. Analizaron el riesgo cardiovascular por los modelos de Framingham-Wilson y REGICOR y comprobaron que Framingham sobreestimaba el riesgo comparado con
REGICOR, advirtiendo que hasta el 54,2% de las mujeres y el 67,9% de los varones fueron asignados a una categoría inferior a la asignada por Framingham-Wilson en la población sin DM. Respecto a la prevalencia del riesgo alto (≥20%) fue del 0,7% (IC95%: 0,3% – 1,2%) en los varones, no hallando a ninguna mujer con riesgo alto. En la población diabética observaron una prevalencia de riesgo alto del 10,4% (IC95%: 7,4% - 13,5%). Ningún individuo, diabético o sin tal condición, cambió a una categoría superior a la asignada por Framingham, al aplicarle el modelo REGICOR. Concluyen, por tanto, que el modelo REGICOR adjudica una categoría más baja en el 50% y 90% de mujeres y hombres, respectivamente, al ser aplicado en la población gerundense, confirmando además el riesgo coronario bajo de la población siendo consistente con la baja incidencia de IAM en la población española. No obstante, son cautos en sus conclusiones al considerar la posibilidad de que los datos no sean perfectamente extrapolables a la población española.

En 2005 se publicó un estudio descriptivo de carácter transversal realizado sobre una población de Vigo (Galicia) comparando el riesgo coronario entre los modelos de Framingham-Wilson y REGICOR (85). Como criterios de inclusión, los participantes debían tener entre 35 y 74 años y ser dislipémicos (colesterol total ≥ 200 mg/dl), excluyéndose personas con manifestaciones clínicas de ateroesclerosis. La muestra final fue constituida por 815 personas, con predominio de sexo femenino (56,1% vs 43,9%), con una prevalencia de DM del 16,4% y de tabaquismo del 22,3%. En la comparación del riesgo coronario con los dos métodos, obtuvieron de igual manera una sobreestimación del riesgo por Framingham-Wilson, así como una correlación fuerte y positiva (r = 0,983; p <0,001) que sin embargo, disminuyó hasta nivel débil (r = 0,489; p <0,001) al estratificar el riesgo en 3 categorías (bajo, moderado y alto). La concordancia entre ambos modelos fue moderada para el riesgo bajo (k = 0,53), así como inversa (k = -0,12) para el riesgo moderado y nula (k = 0,07) para el riesgo alto. Los autores concluyeron, entre otros puntos, que la estimación del riesgo coronario podría causar una menor prescripción de tratamiento hipolipemiante en la población española al realizarlo con el método REGICOR, considerando que en las mujeres sería prácticamente nulo, evitando de esa manera el beneficio del tratamiento de las mujeres diabéticas (86). Postularon la necesidad de revisar el nivel del riesgo alto situado en el 20%, instaurado de forma arbitraria y basada en criterios de coste-efectividad, ya que ensayos clínicos (WOSCOPS, AFCAPS, ASCOT y CARDS) demostraron la reducción de eventos coronarios en población considerada de bajo riesgo.
Un año más tarde, el equipo del Dr. Buitrago publicó un estudio de validación del modelo de Framingham-Anderson, Framingham-Wilson y REGICOR sobre una población diabética de Badajoz a la que realizaron un seguimiento de 10 años (87). El riesgo coronario estimado global fue menor con REGICOR respecto a Framingham-Wilson (10,8% vs 25,4%), aunque ambas traducían un riesgo alto según los puntos de corte para cada modelo. En cuanto a la validez, REGICOR presentó una mayor especificidad y por tanto valor predictivo negativo respecto a su comparador. La concordancia global fue de moderada (k = 0,5), encontrándose diferencias significativas entre ambos sexos, siendo débil en mujeres (k = 0,3) y moderada en varones (k = 0,7). Más de la mitad de los pacientes se clasificaron como de alto riesgo por los 3 modelos. REGICOR fue la única que no observó diferencias en cuanto al riesgo coronario entre ambos sexos y la única que diferenció adecuadamente el riesgo entre quienes presentaron un evento coronario y los que no lo presentaron.

Un año más tarde, el equipo de Buitrago y Cañón-Barroso publicaron un estudio incluyendo a 1011 personas del mismo área de salud de Badajoz, sin enfermedad cardiovascular previa (88). Observaron resultados similares en la evaluación del riesgo coronario medido por Framingham-Wilson y REGICOR respecto al riesgo real observado en el seguimiento, con una sobreestimación por el primer modelo y una infraestimación por el segundo (RC real: 10,7%; RC Framingham: 17,0%; RC REGICOR: 6,6%). La concordancia entre ambos modelos fue moderada (k = 0,70) en la identificación del riesgo coronario alto, así como una capacidad predictiva del riesgo a 10 años discreta.

Conclusiones:

1. Si bien serían necesarios estudios poblacionales con muestra representativa de la población española, a tenor de los resultados de los estudios actuales podríamos afirmar que la estimación del riesgo coronario medido por la adaptación del REGICOR es un modelo validado en población española y que confiere un riesgo menor que el estimado por Framingham-Wilson, confirmando la sobreestimación del riesgo por el modelo americano cuando se aplica sobre la población española.

2. La concordancia en la estimación del riesgo coronario alto entre ambos modelos difieren según la población a la que se aplique, siendo menor si se aplica
únicamente a personas dislipémicas y siendo moderado si se aplica a población general sin manifestaciones cardiovasculares, e incluso población diabética.

FRAMINGHAM vs DORICA

No se encuentran estudios, a día de hoy, cuyo objetivo sea la comparación entre los modelos de Framingham y el de DORICA.

SCORE vs REGICOR

Estudios comparativos

Respecto a la concordancia entre los modelos de SCORE y REGICOR en la población española, disponemos de varios trabajos realizados sobre la población española.

En Badajoz, Buitrago y colaboradores realizaron un estudio retrospectivo cuyo objetivo fue la validez a 10 años de los modelos de SCORE y REGICOR en la predicción del riesgo cardiovascular. Para ellos seleccionaron una muestra compuesta por 608 personas con edades entre 40 y 65 años, representativa de la población a la que atiende un el Centro de Salud La Paz (89). Según su estudio con un seguimiento a 10 años y en el que se excluyeron personas con antecedentes de alguna enfermedad cardiovascular e incluso DM así como personas en tratamiento antihipertensivo e hipolipemiante, REGICOR infraestimó el riesgo cardiovascular mientras que SCORE infraestimó la muerte por causa cardiovascular. Indicaron que sólo SCORE catalogó de forma correcta a las personas con riesgo alto, mientras que las personas que presentaron eventos cardiovasculares no fueron catalogadas de riesgo alto por REGICOR. Este último modelo por otra parte presentó una sensibilidad muy baja, sobre todo en la población femenina con cerca de un 90% de falsos negativos. Por ello, concluyen que SCORE se aproxima más al riesgo real de su cohorte.

Al año siguiente, el mismo grupo, publicaron el análisis de la concordancia entre ambos modelos y la estimación de la proporción de personas candidatas a recibir tratamiento hipotensor e hipolipemiante realizados sobre la muestra anteriormente descrita (90). El análisis mostró una concordancia en el 33% de las personas con riesgo alto, lo que supone una concordancia moderada (k = 0.45). En cuanto a los discordantes, REGICOR estima un riesgo alto (sin serlo así por SCORE) en pacientes
hipertensos con menor edad, cifras de c-HDL y prevalencia de tratamiento antihipertensivo, aunque con mayor prevalencia de tabaquismo. Según las recomendaciones de SCORE, cerca del 23% de los participantes precisarían tratamiento hipolipemiantes y cerca del 30% a tratamiento antihipertensivo, sin existir diferencias por modelo utilizado.

En 2007, se publicó el trabajo liderado por investigadores de la Unidad de Medicina de Familia y Comunitaria del Dpto. de Medicina Clínica de la Universidad “Miguel Hernández” de Elche (Alicante), y en colaboración con la Sociedad de Medicina de Familia y Comunitaria de Valencia (SVMFiC), y de la sección cardiovascular de la Red de Investigación en Actividades Preventivas y Promoción de la salud Atención Primaria (REDIAPP) (91). En su trabajo, reclutaron 8.942 sujetos con edades entre 40 y 65 años. Observaron una concordancia tan sólo moderada entre ambos modelos y postularon que el modelo de SCORE probablemente infraestimaría a la población no diabética y con niveles bajos de c-HDL, mientras que, por otra parte, REGICOR infraestimaría a la población diabética o hipertensa, particularmente a la población joven y de sexo femenino.

Conclusiones:
1. La concordancia entre ambos modelos es moderada.
2. REGICOR infraestimaría el riesgo cardiovascular en la población diabética o hipertensa, mientras que SCORE haría lo propio en población no diabética y con niveles bajos de c-HDL.

SCORE vs DORICA

Consideraciones:

No existen estudios comparativos entre los modelos de SCORE y DORICA en población general española.

Estudio comparativos:

En 2006, se publicó el primer estudio comparativo entre estos modelos, llevado a cabo en Granada conjuntamente por G. Ruiz-Villaverde (especialista de Medicina de Familia y Comunitaria) y especialistas de atención hospitalaria (Sº de Endocrinología y Medicina Interna). En el análisis participaron 200 participantes hipertensos, con predominio de mujeres (58%), con edades comprendidas entre 20 y 75 años de edad,
sobre un total de 654 pacientes hipertensos que fueron derivados desde Atención Primaria hacia consultas externas de Endocrinología (92). Es de destacar que el 89% de la muestra presentó DM tipo 2. Observaron grandes discordancias entre ambos modelos ($k = 0.224; \ p <0.001$). SCORE clasificó al 56,5% ($n = 113$) de la muestra como de riesgo elevado (alto o muy alto), mientras que la proporción de DORICA fue del 23% ($n=46$) siendo tan solo un 4% la discordancia cuando el riesgo es alto con DORICA sin serlo con SCORE y de un 37,5% cuando es al contrario. Con estos resultados, concluyen que SCORE refleja mejor el riesgo incrementado que presenta la población hipertensa, sobre todo cuando coexiste la DM.

En 2011, parte de los integrantes del estudio previo publicaron un dirigido a evaluar la concordancia entre ambos métodos, en esta ocasión, en una población afectada por el Síndrome metabólico (SM) en la provincia de Granada (93). En él, participaron 78 personas con diagnóstico de SM según los criterios de ATP-III. La población fue predominantemente femenina (70%), con una prevalencia de tabaquismo baja (10% aproximadamente en ambos sexos). La prevalencia de riesgo alto fue del 8,3% y 7,2% en hombres y mujeres, respectivamente, sin existir diferencias significativas al realizarlo con DORICA, mientras que se encontraron prevalencias más altas al estimarlas por SCORE (50% vs 29,6%, respectivamente), cuyas diferencias presentaron la significación estadística. Además describieron una concordancia entre ambos modelos baja ($k = 0.224; \ p <0.001$). Los autores concluyen que SCORE refleja mejor el riesgo incrementado que presenta la población con SM, valorando de una forma más real la interacción entre HTA y DM sobre el riesgo cardiovascular.

Conclusiones:

1. No existen estudios comparativos entre los modelos de DORICA y SCORE exclusivamente en la población general, si bien, DORICA parece infraestimar el riesgo en personas con SM o personas hipertensas y diabéticas, donde el modelo de SCORE parece reflejar mejor que DORICA el riesgo de estas personas.

FRAMINGHAM vs SCORE vs REGICOR

Estudios comparativos:

Sin estudios comparativos previos, en 2005 Baena y colaboradores presentaron el primero con la intención de valorar la clasificación en riesgo alto de los tres modelos
anunciados, así como correlación y concordancia entre ellos (94). El estudio se llevó a cabo en Barcelona, en el ámbito de atención primaria. De la población inicialmente seleccionada de forma aleatoria, finalmente cumplieron los criterios de inclusión 851 personas entre 35 y 74 años, sin antecedentes cardiovasculares previos para Framingham-Wilson y REGICOR y 756 personas para SCORE (con una edad más restringida entre 40 y 74 años). El estudio reveló una correlación alta entre los modelos de Framingham y REGICOR \((r = 0,99; p <0,001)\) y algo menor entre Framingham y SCORE \((r = 0,70; p<0,001)\). La concordancia entre Framingham y REGICOR fue valorada para distintos puntos de corte, dado que en aquel tiempo se había definido un riesgo alto para REGICOR si el valor era \(\geq 20\%\) (similar a Framingham) con escasos individuos catalogados como tal. La mayor concordancia entre Framingham y REGICOR se obtuvo con un riesgo alto para REGICOR estipulado en el 10\% o mayor, resultando en una concordancia excelente \((k = 0,83)\). Solo el 5,6\% de personas con riesgo alto por Framingham, presentaron riesgo bajo por REGICOR. Por otro lado, la concordancia entre Framingham y SCORE fue buena \((k = 0,61)\), aunque con diferencias respecto a ambos sexos, siendo peor en las mujeres \((k = 0,44 vs k = 0,72)\). El 5,8\% de las personas con riesgo alto por Framingham presentaron riesgo bajo con SCORE y el 9,3\% al contrario.

En 2006, García-Ortiz nos mostró en su estudio la concordancia y estimación del riesgo cardiovascular según las ecuaciones de Framingham-Grundy, SCORE y REGICOR en población hipertensa (95). Para ello, seleccionaron de una base de datos de la provincia de Salamanca con 3284 personas a 820 de forma aleatoria, de la que finalmente incluyeron en el análisis a 453 pacientes hipertensos, entre 30 y 74 años de edad. La presencia de enfermedad cardiovascular no fue un criterio de exclusión, ya que su objetivo no fue valorar la intervención terapéutica. La prevalencia de DM, tabaquismo, cardiopatía isquémica y enfermedad cerebrovascular fue del 20,5\%, 9,5\%, 9,1\% y 1,8\%, respectivamente. Respecto al riesgo cardiovascular, fue mayor en los varones sin diferencias por los modelos empleados, y mayor por Framingham-Grundy, seguido de SCORE y de REGICOR, de hecho este ultimo estimó un RCV entre dos y tres veces inferior a los otros dos modelos. La correlación entre ambos modelos fue positiva e intensa \((r de Pearson \geq 0,80\) para cada correlación). Sin embargo, la concordancia fue débil entre Framingham-Grundy y REGICOR, así como entre SCORE y REGICOR con índices kappa de 0,045 y 0,063, respectivamente, mejorando entre Framingham-Grundy y SCORE \((k = 0,62)\).
Finalmente, el grupo liderado por Eva Comín y Jaume Marrugat publicaron un estudio con una cohorte de 5732 personas de 9 comunidades autónomas, de las que de 1305 disponían de un seguimiento prospectivo desde el 1995 (96). En el periodo de seguimiento se observó una incidencia baja de enfermedad isquémica coronaria (3,1%) y de mortalidad coronaria (0,75%), siendo casi el 70% en edades comprendidas entre los 65 y los 74 años. La comparación entre los tres modelos fue realizada, sin embargo, solo incluyendo los individuos con edades entre 35 y 64 años de edad. Los autores concluyeron que, aunque los eventos cardiovasculares ocurrieron en la mitad de los casos en individuos que no fueron considerados de alto riesgo por los modelos a estudio debido a su baja sensibilidad (<60%), REGICOR con un límite de alto riesgo del 10% presentó un buen balance entre sensibilidad, especificidad y valor predictivo positivo.

Conclusiones:

1. La concordancia entre Framingham y su adaptación para la población española (REGICOR) es excelente, supliendo el problema de la sobreestimación del modelo original americano.
2. Es una herramienta validada en la población española.
3. Estableciendo el riesgo alto en el 10%, presenta unos índices balanceados para presentarla como una herramienta de cribado en la población española.

FRAMINGHAM vs SCORE vs REGICOR vs DORICA

Consideraciones:

No existen estudios, a día de hoy, cuyo objetivo sea la comparación entre los cuatro modelos implicados en nuestro trabajo, realizados sobre población general española. Sin embargo, merece ser mencionado la existencia de un estudio comparativo entre los modelos realizado sobre población española, afectada de Psoriasisis, y publicado recientemente y cuya explicación no tiene cabida en el presente trabajo (97).
4.A.- ESTIMACION DEL RIESGO CARDIOVASCULAR EN SUBPOBLACIONES ESPECÍFICAS

Todo lo expuesto previamente ha sido referenciado a la población general española. No obstante, hay suficientes evidencias científicas que soportan la existencia de un incremento del RIESGO en un subconjunto de la población afectada por ciertas enfermedades de etiología diferente, como por ejemplo, los pacientes con infección por el virus de la inmunodeficiencia humana (98-99), los pacientes con enfermedades reumatológicas (100-102), así como enfermedades autoinmunes o autoinflamatorias, entre otras. Todas estas condiciones compartirían la activación de la cascada inflamatoria en la que, entre otros mecanismos, participarían los componentes de la inmunidad innata: sistema del complemento, TLR’s y el denominado “Inflamosoma”, como demuestra la figura 9.

Estos hallazgos, traducen un punto importante en cuanto a la intervención para la reducción del riesgo en dichas patologías. Por ejemplo, en las enfermedades autoinmunes y reumatológicas se ha visto el beneficio multifactorial de la Hidroxicloroquina (104-106), de fármacos modificadores de la enfermedad (107), como es el caso del Metotrexate e incluso de algunos agentes biológicos, como los anticuerpos monoclonales anti-Factor de necrosis tumoral alfa (108-110) en la reducción de muertes por causa cardiovascular, aunque en el último caso –el de las terapias biológicas- parece existir mayor controversia. Es por ello, que una de las mejores actitudes a adoptar sería controlar de forma estricta los fenómenos inmunológicos e inflamatorios que subyacen a dichas patologías, además de los factores de riesgo clásicos y favorecer los estilos de vida saludables.

En este campo, hay escasos estudios encaminados a valorar qué herramientas de las previamente desarrolladas sería la más adecuada a utilizar por los clínicos a la hora de realizar una adecuada valoración preventiva. Sin embargo, existen estudios que apoyan la idea de que estas herramientas infraestiman el riesgo en estas poblaciones específicas (111), siendo por otro lado lógico, dado que ocurre lo mismo en la población general. Por ello, los clínicos recuerdan la necesidad de continuar investigando en la búsqueda de herramientas de estimación del riesgo para estas poblaciones específicas (112).
5.- HIPÓTESIS DE TRABAJO Y OBJETIVOS.

La necesidad de identificar un instrumento con la suficiente efectividad para calcular el riego cardiovascular de la población, obliga a considerar y comparar las tablas de riesgo más comúnmente empleadas hasta este momento, aun cuando tengan diferentes orígenes. Precisamente los rasgos distintivos entre ellas, que suelen estar condicionados por las características de la población que se ha empleado para su cálculo, así como por los parámetros y variables que se incluyen en cada modelo, condicionan –de hecho- los posibles resultados de su aplicación, con el conocido riesgo de infraestimar o, por el contrario, sobreestimar, el riesgo en un individuo concreto.

Dejando al margen el hecho de que idealmente el mejor método o tabla a emplear es aquel que se deriva de la propia población a la que se aplica, disponemos de distintos instrumentos de cálculo que han sido convenientemente calibrados y empleados de forma profusa, y que –de una forma u otra- han sido validados.

Los conocimientos a día de hoy permiten sugerir que el empleo de uno u otro de tales métodos puede ofrecer resultados distintos, e incluso muy dispares; de tal forma que estaría justificado su análisis comparativo al objeto de ofrecer aquel que más se pudiera ajustar a una valoración más adecuada a la realidad.

Por tanto, el objetivo primario del presente trabajo ha sido:

- Conocer si existe una correlación, o no, entre distintos métodos de calibración del riesgo cardiovascular global cuando se aplican individualmente a una determinada población en nuestro entorno.

En un sentido complementario, el principal objetivo es:

- Detectar el grado de concordancia o discordancia entre distintos instrumentos para el cálculo del riesgo cardiovascular cuando estos se aplican a una misma población.

Como objetivos secundarios, derivados de la aplicación de los diferentes modelos de tablas de riesgo a la población de nuestro entorno, han sido:

- Estratificar a dicha población en función de los niveles de riesgo de acuerdo con los estratos convencionales: riesgo bajo, moderado, alto y muy alto
- Comprobar cómo la aplicación de un método u otro puede afectar a la reestratificación de riesgo, valorando de forma muy especial todos aquellos
individuos con riesgo alto o muy alto que pueden pasar desapercibidos según el método empleado

Finalmente, hemos de hacer referencia a los modelos que se han seleccionado para realizar el estudio, aún cuando en el apartado de material y métodos se analizan de forma detallada. Para la consecución de los objetivos señalados anteriormente es preciso considerar aquellos modelos que se encuentre más comúnmente empleados. En consecuencia, debemos considerar las siguientes opciones:

- **Modelo de Framingham.** Derivado del estudio de su mismo nombre, y ampliamente empleado a nivel internacional y muy especialmente en la población de origen norteamericano

- **Modelo de SCORE.** El modelo más celebrado y empleado en Europa, de cuya población procede, y que –en consecuencia- ofrece la particularidad de una mayor proximidad. Además tiene la ventaja de que ofrece información sobre riesgo de mortalidad en lugar de morbilidad como ocurre con el resto.

- **Modelo de estudio DORICA.** Derivado de datos poblacionales de distintas Comunidades Autónomas de España, lo que le confiere un valor nacional en su origen, aún cuando no procede de un estudio prospectivo. Su modelo tiene el mismo fundamento que el de Framingham, adaptado a la realidad española.

- **Modelo REGICOR.** Derivado inicialmente de los datos provenientes de una provincia española (Girona), y también sustentado en el modelo de Framingham. Su validez ha sido verificada posteriormente.

Si nuestros resultados resultaran concluyentes podríamos confirmar la disparidad de resultados según el modelo que se empleara, así como si existen algunos de entre ellos que se puedan considerar más equivalentes. Al mismo tiempo, estaríamos en condiciones de señalar cómo la aplicación de uno o de otro podría infraestimar o sobreestimar el riesgo cardiovascular, lo que puede ser especialmente trascendente a la hora de tener individuos infratratados o sobretratados en sus factores de riesgo.
6.- MATERIAL Y MÉTODOS:
6.A.- DISEÑO DEL ESTUDIO

Nuestro estudio englobó un conjunto de datos referentes a factores de riesgo cardiovascular, de carácter transversal, recogidos entre el 22 y el 25 de Octubre de 2009.

Proceso de selección de la muestra:

En un intento por conseguir una muestra representativa de la población general española, la recogida de datos se llevó a cabo en el Instituto Ferial de Madrid (IFEMA) durante el “Salón de Dieta Mediterránea y la Salud”. Se siguió un procedimiento de muestreo de conveniencia o “muestra capturada”. Instalamos un “stand” con el apoyo de la Sociedad Española de Ateroesclerosis (SEA) en el que se ofrecía a los participantes la estimación del riesgo cardiovascular mediante la determinación de parámetros antropométricos y bioquímicos básicos. No se dio compensación económica ni con objetos materiales (regalos) a los participantes. No se usó publicidad alguna.

Para ello se seleccionaron todas aquellas personas de ambos sexos y sin límite de edad, que se interesaron por su riesgo cardiovascular, es decir, aquéllas que se acercaron al mostrador que instalamos en el IFEMA, incluyéndose una muestra inicial de 653 personas (N = 653).

• A pesar de que las tablas de estimación tienen cotejados a los individuos según su edad, en la práctica habitual se tienden a asumir un riesgo cardiovascular para los individuos menores a 30 años similar al de ese mismo rango etario. Por otro lado, ocurre algo similar con las personas mayores a 65 ó 75 años según el modelo a estimar, por lo que se siguió la misma regla en personas mayores de tal límite. Es por ello, que no se restringió a los individuos según la edad que presentaran, siempre y cuando tuvieran una edad mínima de 18 años como se mencionó antes. Además, se excluyeron del análisis aquellas en las que se perdieron valores de los variables que componentes los factores de riesgo cardiovasculares clásicos (tanto categóricas como cuantitativas) que permiten la estimación del riesgo cardiovascular por alguno de los cuatro modelos estudiados, bien porque se produjo algún error en la recogida de
datos o porque los participantes decidieron no dar tal información. En total, según los dos criterios anteriores se eliminaron del análisis a 26 personas. La muestra total resultante fue de individuos (N = 627).

- En un segundo proceso se excluyeron del análisis las personas que respondieron de forma afirmativa a la pregunta de padecer alguna de las enfermedades cardiovasculares clásicas (ECor, EAP ó ACV) y que, por tanto, conferían un riesgo cardiovascular elevado per sé, siendo dichos pacientes susceptibles de intervención terapéutica con fines de prevención secundaria. Este segundo grupo de personas excluidas representaron un total de 134 personas con enfermedades cardiovasculares. Finalmente, tras los procesos de selección previamente comentados, el número total de participantes que cumplieron los criterios previos fue de 493 individuos (N = 493).

En la figura 10, se resume el proceso de selección de la muestra.

Figura 10. Organigrama descriptivo del proceso de selección de la muestra para el análisis estadístico.
Variables del estudio:

Se recogieron los datos para cada individuo de forma manual, mediante un formulario que era rellenado por el personal del stand, tanto para las variables categóricas como para las cuantitativas. Posteriormente tales datos fueron digitalizados mediante una hoja de Excel.

En el diseño de nuestro estudio se contempló la recogida y análisis de variables clásicas relacionadas con el riesgo cardiovascular, clasificándolas en factores modificables y factores no modificables (referencia de la clasificación). A continuación se detallan las diferentes variables recogidas y resumidas en las Tablas 1 y 2.

1. Factores no modificables:
 - Demográficas:
 - Sexo: recogida como variable dicotómica (varón/mujer)
 - Edad: recogida en años cumplidos.
 - Antecedentes médicos:
 - Enfermedad arterial periférica (EAP), Enfermedad coronaria (ECor), Enfermedad cerebrovascular (ACV); previas al momento de la encuesta.

2. Factores modificables:
 - Factores de riesgo cardiovasculares clásicos:
 - Hipertensión arterial (HTA), Dislipemia (DLP), Diabetes Mellitus (DM) previamente conocidas, así como si habían realizado tratamiento previo (TratHTA y TratDLP): Todas las variables se recogieron como categóricas dicotómicas.
 - Hábitos de vida:
 - Tabaquismo activo: recogida como variable dicotómica (sí/no).
 - Antropometría:
 - Peso: Debido a las limitaciones del recinto para conservar la intimidad de las personas, se realizaron dos mediciones en una báscula
homologada, con la persona vestida aunque descalza, y tomando como medida final la resultada de la media aritmética (en Kg).

- Talla: medida con aparato homologado, con el paciente erguido y sin calzado, realizándose una única medida y recogida en centímetros (cm).

- Presión arterial sistólica (PAS) y diastólica (PAD): determinándose con aparatos de medición homologados en dos ocasiones en el brazo dominante con el paciente en sedestación, considerando como medida final la resultada de la media aritmética.

Parámetros analíticos:

- Bioquímicos: glucemia en el momento de la recepción (no pudiéndose asegurar glucemia basal en ayunas en todos los participantes), colesterol total (Col), colesterol unido a lipoproteínas de baja y alta densidad (c-LDL y c-HDL, respectivamente) y triglicéridos (TG). Se usó química seca auto-analítica con muestra de sangre capilar para la determinación de todas las variables bioquímicas, anteriormente descritas.

<table>
<thead>
<tr>
<th>Tabla 1. Variables categóricas del estudio.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nombre de la variable</th>
<th>Descripción de la variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sexo)</td>
<td>Sexo</td>
<td>Masculino/Femenino</td>
</tr>
<tr>
<td>(htaconoc)</td>
<td>Hipertensión arterial previa</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>(trathta)</td>
<td>Tratamiento antihipertensivo previo</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>(dlpconoc)</td>
<td>Dislipemia previa</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>(tratdlp)</td>
<td>Tratamiento hipolipemiante previo</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>(dmconoc)</td>
<td>Diabetes Mellitus previa</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>(fumador)</td>
<td>Tabaquismo activo</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>cipprevia</td>
<td>Cardiopatía isquémica previa</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>eapprevia</td>
<td>Enf. Arterial Periférica previa</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>ecvprevia</td>
<td>Enf. Cerebrovascular previa</td>
<td>Dicotómica (Sí / No)</td>
</tr>
<tr>
<td>Nombre de la variable</td>
<td>Descripción de la variable</td>
<td>Unidades</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>edad</td>
<td>Edad</td>
<td>Años cumplidos corregidos (+ 0.5 años)</td>
</tr>
<tr>
<td>peso</td>
<td>Peso</td>
<td>Kilogramos corregidos (+ 0,5 Kg.)</td>
</tr>
<tr>
<td>talla</td>
<td>Talla</td>
<td>Centímetros (cm.)</td>
</tr>
<tr>
<td>IMC</td>
<td>Índice de masa corporal</td>
<td>Peso (Kg) / Talla (m²)</td>
</tr>
<tr>
<td>pas</td>
<td>Presión arterial sistólica</td>
<td>Milímetros de mercurio (mm Hg)</td>
</tr>
<tr>
<td>pad</td>
<td>Presión arterial diastólica</td>
<td>Milímetros de mercurio (mm Hg)</td>
</tr>
<tr>
<td>glucemia</td>
<td>Glucemia capilar</td>
<td>Miligramos por decilitro (mg/dl)</td>
</tr>
<tr>
<td>coltotal</td>
<td>Colesterol total</td>
<td>Miligramos por decilitro (mg/dl)</td>
</tr>
<tr>
<td>hdl</td>
<td>Colesterol unido a lipoproteínas de alta densidad.</td>
<td>Miligramos por decilitro (mg/dl)</td>
</tr>
<tr>
<td>ldl</td>
<td>Colesterol no unido a lipoproteínas de alta densidad.</td>
<td>Miligramos por decilitro (mg/dl)</td>
</tr>
<tr>
<td>tg</td>
<td>Triglicéridos</td>
<td>Miligramos por decilitro (mg/dl)</td>
</tr>
</tbody>
</table>
6B.- VARIABLES GENERADAS. TABLAS DE MODELOS EMPLEADOS.

Tras la recogida de datos de la muestra, según se ha indicado en el apartado anterior, se calculó el Índice de masa corporal (IMC) según la fórmula clásica del astrónomo, Alphonse Quetelet.

A continuación se procedió a realizar la estimación del riesgo cardiovascular para cada uno de los individuos utilizando las cuatro funciones a comparar en el estudio: Framingham, SCORE, REGICOR y DORICA.

- Para la estimación del RCV según el modelo de Framingham se utilizó la ecuación derivada del trabajo de Wilson, que se compone de varios pasos:
 - Primer paso: Calculo del coeficiente de Colesterol (L_Chol).
 - L_Chol= Coef_edad x Edad + Coef_total + Coef_hdl + Coef_PASPAD + Coef_DM + Coef_fum
 Los coeficientes del primer paso se presentan en la tabla 3.
 - Segundo paso: Coeficiente de Colesterol según el Sexo (G_Chol).
 - G_Chol_hombre =3,0975
 - G_Chol_mujer =9,92545
 - Tercer paso: Ecuación A
 - A = L_Chol – G_Chol
 - Cuarto paso: Ecuación B.
 - B = e^A
 - Coeficiente de estimación de la supervivencia a 10 años según el sexo [s(t)]
 - [s(t)]_hombre =0,90015
 - [s(t)]_mujer =0,96246
 - Quinto paso: Cálculo final de RCV a 10 años.
 - p = 1 – [s(t)]^B

Estos cálculos se realizaron mediante una hoja de cálculo en Excel.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>0.04826</td>
<td>0.33766</td>
</tr>
<tr>
<td>Edad^2</td>
<td>-0.00268</td>
<td>-0.00268</td>
</tr>
<tr>
<td>Colesterol total (mg/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><160</td>
<td>-0.65945</td>
<td>-0.26138</td>
</tr>
<tr>
<td>160-199</td>
<td>Referencia</td>
<td>Referencia</td>
</tr>
<tr>
<td>200-239</td>
<td>0.17692</td>
<td>0.20771</td>
</tr>
<tr>
<td>240-279</td>
<td>0.50539</td>
<td>0.24385</td>
</tr>
<tr>
<td>≥ 280</td>
<td>0.6573</td>
<td>0.53513</td>
</tr>
<tr>
<td>c-HDL (mg/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><35</td>
<td>0.49744</td>
<td>0.84312</td>
</tr>
<tr>
<td>35-44</td>
<td>0.24310</td>
<td>0.37796</td>
</tr>
<tr>
<td>45-49</td>
<td>Referencia</td>
<td>0.19785</td>
</tr>
<tr>
<td>≥ 50</td>
<td>-0.05107</td>
<td>Referencia</td>
</tr>
<tr>
<td>Presión arterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Óptima (<120 / <80)</td>
<td>-0.00226</td>
<td>-0.53363</td>
</tr>
<tr>
<td>Normal (120-129 / 80-84)</td>
<td>Referencia</td>
<td>Referencia</td>
</tr>
<tr>
<td>Normal-Alta (130-139/84-89)</td>
<td>0.28320</td>
<td>-0.06773</td>
</tr>
<tr>
<td>HTA estadio I (140-159 / 90-99)</td>
<td>0.52168</td>
<td>0.26288</td>
</tr>
<tr>
<td>HTA estadios II-IV (≥160 / ≥100)</td>
<td>0.61859</td>
<td>0.46573</td>
</tr>
<tr>
<td>Diabetes (si presente)</td>
<td>0.42939</td>
<td>0.59626</td>
</tr>
<tr>
<td>Tabaquismo (si presente)</td>
<td>0.52337</td>
<td>0.29246</td>
</tr>
</tbody>
</table>

- Para la estimación según los datos del SCORE se optó, debido a los conocimientos actuales de prevalencia de factores de RCV, por utilizar la función adaptada a los países europeos de bajo riesgo cardiovascular (Anexo 4).

- Para la estimación según las ecuaciones derivadas de los trabajos españoles (REGICOR y DORICA) se utilizaron las tablas correspondientes, recogidas en los Anexos 5 (5A y 5B) y 6 (6A y 6B), comentadas previamente.

Como se ha comentado previamente, con el fin de poder realizar una comparación entre los diferentes modelos a toda la población seleccionada, a la población con edades fuera del rango de cada modelo se estimó el RCV de acuerdo al grupo etario más cercano.
6C.- TRATAMIENTO ESTADÍSTICO DE LOS DATOS.

El análisis estadístico se ha realizado mediante el paquete estadístico STATA en su versión 12.0. Se ha estimado la prevalencia de los factores de riesgo cardiovascular y de las enfermedades cardiovasculares. En la estadística descriptiva de la muestra se han utilizado:

- Se utilizó la prueba de Shapiro-Wilk para analizar el tipo de distribución que sigue cada variable.

- La media aritmética y desviación estándar para variables cuantitativas que siguieran una distribución normal, así como la mediana y el rango intercuartílico (IQR) para la descripción de variables cuantitativas que no siguieran la distribución normal.

- La estimación de proporciones, expresándose el número absoluto (tanto por 1) ó en tanto por ciento (%), seguido de su intervalo de confianza al 95% (IC95%), estimados por el método de Wilson. El intervalo de confianza al 95% (IC95%) de la diferencia de proporciones se estimó mediante el método de Newcombe.

- El estadístico “t” de Student para la comparación de 2 medias en las variables que cumplieran las condiciones de igualdad de varianzas y de normalidad. Para las que no cumplieran la primera condición (estudiado mediante la prueba de Levene) se utilizó el estadístico “t” con la corrección de Welch. Para las que no cumplieran la segunda condición, se utilizó la prueba no paramétrica “Test de la suma de rangos de Wilcoxon” o también conocida como “U” de Mann-Whitney, cuyos resultados se expresa con el estadístico (W) y la probabilidad de ser debido al azar (p).

- La prueba de Chi-cuadrado para la comparación de proporciones entre variables con 2 o más categorías. En caso de no poder utilizar la prueba de Chi-cuadrado (χ^2) por no cumplir los condicionantes de tamaño muestral, se utilizó la Prueba exacta de Fisher. Para las variables categóricas ordinales con 3 o más categorías se utilizó la Chi-cuadrado de tendencia lineal (χ^2 tendencia lineal).
Para el contraste de hipótesis se optó por redefinir el riesgo cardiovascular estimado por cada modelo en tres categorías: bajo, medio y alto riesgo, usando los siguientes límites para cada función:

- Framingham: se clasificó de 0 a 9.99%, riesgo bajo; de 10% a 19.99%, riesgo medio; y ≥20% riesgo cardiovascular alto.
- SCORE: de 0 a 2.99%, riesgo bajo; de 3% a 4.99%, riesgo medio; y ≥5% riesgo cardiovascular alto.
- REGICOR: de 0 a 4.99%, riesgo bajo; de 5% a 9.99%, riesgo medio; y ≥10% para el riesgo cardiovascular alto
- DORICA: de 0 a 4.99%, riesgo bajo; de 5% a 19.99%, riesgo medio; y ≥20% riesgo cardiovascular alto.

Los puntos de corte escogidos para categorizar el riesgo cardiovascular estimado por cada modelo corresponden a los descritos en la literatura y a los que se corresponden de la siguiente manera según la escala visual incluida en las tablas de cada modelo: en las escalas REGICOR Y DORICA el riesgo bajo corresponde al color verde, el riesgo medio a los colores amarillo y naranja claro, y el riesgo alto al color naranja oscuro y rojo. Para el modelo de SCORE, el riesgo bajo corresponde a los colores verdes, el riesgo medio a los colores amarillo, naranja y rojo claro, siendo el riesgo alto el propio de los colores rojo oscuro y granate.

Para las comparaciones del RCV entre los diferentes modelos, se consideró que la población DM presentaba un RCV alto estimado por SCORE, de acuerdo a las indicaciones publicadas por la Sociedad Europea de Cardiología, así como la población con niveles de colesterol total por encima de 320 mg/dl, de colesterol unido a LDL (c-LDL) por encima de 240 mg/dl o PAS/PAD > 180/110 mmHg.

También se valoró la asociación entre los modelos mediante la correlación entre el riesgo cardiovascular estimado por cada uno de ellos, utilizándose el coeficiente Rho de Spearman.

Posteriormente, para analizar de la concordancia entre los distintos modelos se volvió a categorizar la estimación del RCV por los diferentes modelos en 2 categorías, combinando los niveles riesgo bajo y riesgo medio en una nueva categoría llamada riesgo no elevado y formando la categoría etiquetada como riesgo elevado la categoría previa llamada “riesgo alto”. Se calculó la concordancia conjunto de los cuatro
modelos con la prueba no paramétrica “Kappa de Fleiss”, que estima la concordancia cuando hay varios “observadores”. Además se valoró la concordancia entre pares de modelos con el índice de Kappa. El nivel de significación estadística establecido fue el estándar (p < 0.05).
7.- RESULTADOS DEL ESTUDIO.

7A.- DESCRIPCION DE LA MUESTRA.

Nuestra muestra estaba formada principalmente por mujeres (N = 321; 65,1%, IC95%: 60,8%-69,2%) como muestra la figura 11.

![Figura 11. Distribución de la variable Sexo.](image)

La distribución de la variable edad no siguió una distribución normal, con asimetría ligeramente positiva y distribución ligeramente platicúrtica, tal como puede apreciarse en la figura 12.

![Figura 12. Estudio de la normalidad de la variable Edad en la muestra.](image)

La mediana de edad de la muestra fue de 54,5 años (años cumplidos corregidos), con un IQR de 27 años. La mediana de edad en el género femenino fue de 54,5 años (IQR: 28 años) y en el masculino de 54 años (IQR: 30 años). No hubo diferencias entre las medias de las edad de hombres y mujeres (W_{edad}= 0,706; p_{edad} = 0,480).
En referencia a la determinación de los parámetros antropométricos:

- Se obtuvieron datos de las mediciones del peso y la talla en 491 y 490 individuos, respectivamente. No se puede asumir una distribución normal en tales variables como puede comprobarse en las figuras 15 y 16.

- En la población global la mediana del peso se situó en los 68,5 Kg (IQR: 19 Kg) y, por otra parte, la mediana de la altura de la población alcanzó los 162,5 cm (IQR: 14 cm).

- Analizando el peso y talla en función del sexo de los individuos, la mediana del peso para la población masculina fue de 80 Kg (IQR: 16,5 Kg) y para la femenina de 64 Kg (IQR: 13,75). Asimismo, la mediana de la altura para la población masculina fue de 170,5 cm (IQR: 11 cm) y para la población femenina de 156,5 cm (IQR: 11 cm). Se observaron distribuciones diferentes para ambos sexos en ambas variables ($W_{peso} = 11,537$ y $p_{peso}<0,001; W_{talla} = 14,227$ y $p_{talla} = <0,001$). Estos datos, se representan en las figuras 15 a 18.
Se pudo estimar el IMC en 490 participantes. Ningún participante presentó IMC compatible con grado de desnutrición. La mediana de IMC de la población a estudio fue de 26,5 kg/m² (IQR: 6,1 kg/m²). El 62,9% (IC 95%: 58,5%-67,0%) de los participantes presentó algún grado de obesidad (IMC ≥ 25 kg/m²). La mediana de IMC para la población femenina fue de 26 kg/m² (IQR: 6,3 kg/m²) y de 27,5 kg/m² (IQR: 5,5 kg/m²) para la población masculina.
La diferencia entre las medianas del IMC entre ambos sexos fue estadísticamente significativa ($\chi^2 = 9.92; p = 0.002$). Por otro lado, la distribución de los grados de obesidad según el IMC en el género femenino fue la siguiente: normopeso (n=136; 42.6%, IC95%: 37.3%-48.1%), sobrepeso (n=111; 35.0%, IC95%: 29.8%-40.2%), obesidad grado I (n=56; 17.6%, IC95%: 13.8%-22.1%), obesidad grado II (n=15; 4.7%, IC95%: 2.9%-7.6%) y obesidad mórbida (n=1; 0.3%, IC95%: 0.1%-1.8%). En los varones, sin embargo, encontramos: normopeso (n=46; 26.9%, IC95%: 20.8%-34.0%), sobrepeso (n=82; 48.0%, IC95%: 40.6%-55.4%), obesidad grado I (n=36; 21.1%, IC95%: 15.6%-27.8%), obesidad grado II (n=4; 2.3%, IC95%: 0.9%-5.9%) y obesidad mórbida (n=3; 1.8%, IC95%: 0.6%-5.0%). Las diferencias entre ambos sexos se pueden apreciar en la figura 2. Además, estas diferencias halladas fueron estadísticamente significativas ($\chi^2_{tendencia lineal} = 4.932; p = 0.026$).

![Figura 22. Distribución del IMC “categórico” fragmentado por la variable Sexo.](image)
7A.1.-FACTORES DE RIESGO CARDIOVASCULAR

En cuanto a los factores de riesgo cardiovascular clásicos modificables (HTA, DLP, DM, tabaquismo y sobrepeso), observamos, como se muestra en la figura 23, que el 81,7% (IC95%: 78,1%-84,9%) de los participantes presentaban al menos un factor de riesgo cardiovascular, distribuyéndose de la siguiente manera: 206 individuos (41,8%; IC95%: 37,5-46,2%) presentaba un factor, 140 personas (28,4%; IC95%: 24,6%-32,5%) dos factores, 46 personas (9,3%; IC95%: 7,1%-12,2%) tres factores y, por último, 11 individuos (2,2%; IC95%: 1,3%-4,0%) cuatro factores. No hubo ningún participante con los cinco factores clásicos.

Valorando tal distribución en función del sexo de los individuos, encontramos que el 21,2% (IC95%. 17,1%-26,0%) de la población femenina carecía de factores de RCV, el 38,9% (IC95%: 33,8%-44,4%) presentó uno de ellos, el 27,7% (IC95%: 23,1%-32,9%) dos factores, el 10,0% (IC95%: 7,2%-13,7%) tres factores y el 2,2% (IC95%: 1,1%-4,4%) cuatro de los cinco factores clásicos. De la misma manera, en la población masculina hallamos que el 12,8% (IC95%: 8,6%-18,6%) carecía de los FRCV clásicos, el 47,1% (IC95%: 39,8%-54,5%) respondió afirmativamente a un FRCV, el 29,7% (IC95%: 23,3%-36,7%) a dos de los cinco, el 8,1% (IC95%: 4,9%-13,2%) a tres factores y el 2,3% (IC95%: 0,9%-5,8%) a cuatro. Las diferencias no fueron estadísticamente significativas (χ^2 tendencia lineal = 0,452; p = 0,501). Estos resultados se muestran en la figura 24.
A continuación se enumeran las características de los diferentes factores de RCV principales estudiados en nuestra población:

- **Tabaquismo**: El total de la muestra contestó a la pregunta sobre el hábito tabáquico. En la muestra total, 73 personas, es decir, el 14,8%(IC95%: 11,9% - 18,2%) se consideraban fumadores. De ellas, 47 personas (64,4%, IC95%: 52,9%-74,4%) fueron del sexo femenino, representando el 14,6% de la población femenina (IC95%: 11,2%-18,9%) y 26 individuos, es decir el 35,6% de los fumadores (IC95%: 25,6%-47,1%) del género masculino, componiendo el 15,1% del total de participantes de tal género (IC95%: 10,5%-21,2%). No se encontraron diferencias estadísticas en cuanto a la proporción de fumadores en los diferentes sexos ($\chi^2 = 0,020; p = 0,888$).
- **Hipertensión arterial**: Se produjeron algunas pérdidas de información a la hora de la recogida de datos que, tras la selección de la muestra a estudio, observamos con exclusividad en la variable PAD, obteniéndose una información final en esa variable para 483 individuos. Como puede comprobarse en la figura 26, la variable PAS no siguió una distribución normal (S-W test: p < 0.001) a diferencia de la PAD (S-W test: p = 0.371).

La mediana de la PAS en la muestra global se situó en los 134 mmHg (IQR: 24 mmHg) y la de la PAD en 80 mmHg (IQR: 14 mmHg). En el sexo femenino las medias de la PAS y PAD se situaron en los 132 mmHg (IQR: 23 mmHg) y 79,5 mmHg (IQR: 13 mmHg) respectivamente, mientras que en el género masculino fue de 138 mmHg (IQR: 21 mmHg) y 80 mmHg (IQR: 12 mmHg). En las figuras 29-32 se representan los datos anteriores. Se encontraron diferencias estadísticamente significativas comparando las medias de PAS entre ambos sexos, a favor del sexo...
masculino ($W_{PAS} = 3,712$, $p_{PAS}<0,001$), sin hallar diferencias en cuanto a la PAD ($t_{PAD} = 0,512$, $p_{PAD} = 0,609$).

NOTA: Las líneas rojas en las gráficas de la derecha representan las medias de PAS y PAD en la población femenina, mientras que las líneas de color marrón claro las correspondientes para la población masculina.

La prevalencia de HTA en la población a estudio fue del 20,7% (IC95%: 17,3%-24,5%). Analizando los datos según el sexo de la población, 70 mujeres (21,8%; IC95%: 17,6%-26,6%) y 32 hombres (18,6%; IC95%: 13,5%-25,1%) conocían el diagnóstico de HTA. Hubo 2 personas en tratamiento antihipertensivo que desconocían diagnostico de HTA (ambas del sexo femenino). No obstante, y considerando a tales mujeres como hipertensas, no se hallaron diferencias estadísticamente significativas entre ambos sexos ($\chi^2 = 0,985; p = 0,321$).
En cuanto al tratamiento antihipertensivo, 59 mujeres y 23 varones, que representaban el 78,8% de las personas con HTA conocida previamente (IC95%: 70,0%-85,6%), se encontraba en tratamiento antihipertensivo. No existieron diferencias estadísticamente significativas entre ambos sexos ($\chi^2 = 1,347; p = 0,246$).
Asimismo, encontramos que hasta un 57,4% (IC95%: 53,0%-61,7%) de la muestra global presentó cifras tensionales (PAS y PAD) en el rango de la normalidad, frente al 30,6% (IC95%: 26,7%-34,8%) con alguna alteración en PAS ó PAD y al 12,0% (IC95%: 9,4%-15,1%) obtuvo PAS y PAD elevadas al mismo tiempo. Además, encontramos diferencias significativas entre ambos sexos ($\chi^2 = 6,407; p = 0,041$), presentando la siguiente distribución: el 61,4% (IC95%: 55,9%-66,5%) de las participantes presentaron ambas cifras en el rango de la normalidad (por 50,0% en el género masculino, IC95%: 43,0%-57,4%), frente al 27,1% (IC95%: 22,5%-32,2%) con algunas de las determinaciones elevadas (por 37,2% en los varones, IC95%: 30,3% - 44,6%) y al 11,5% (IC95%: 8,5%-15,5%) con ambas cifras elevadas (por 12,8% en los hombres, IC95%: 8,6%-18,6%).

![Diagrama](image)

Figura 38. Relación entre PAS y PAD en muestra global.

Valorando tales relaciones según el conocimiento o desconocimiento de los participantes de padecer de HTA, encontramos diferencias significativas en el control de la PAS y PAD ($\chi^2 = 35,576; p < 0,001$), exponiéndose los siguientes resultados:

- En personas con desconocimiento, el 64,0% (IC95%: 59,1%-68,6%) tenía las cifras en el rango de la normalidad. Sin embargo, hasta el 27,0% (IC95%: 22,8%-31,6%) presentaron una de las cifras elevadas y el 9,0% (IC95%: 6,5%-12,3%) elevación de ambas cifras tensionales.

Analizando la distribución de estos resultados según el sexo de los participantes se encontraron, de igual manera, diferencias
estadísticamente significativas \((\chi^2 = 7,568; p = 0,023) \). Así, el 68,7% (IC95%: 62,7%-74,1%) de las participantes presentaron ambas cifras en el rango de la normalidad (por 55,7% en el género masculino, IC95%: 47,4%-63,7%), frente al 22,5% (IC95%: 17,7%-28,1%) con algunas de las determinaciones elevadas (por 35,0% en los varones, IC95%: 27,6%-43,2%) y al 8,8% (IC95%: 5,9%-13,0%) con ambas cifras elevadas (por 9,3% en los hombres, IC95%: 5,5%-15,2%). Estos resultados se representan las figuras 39 y 40.

En personas con conocimiento de padecer HTA, la prevalencia de normalidad en ambas cifras de tensión arterial fue del 32,7% (IC95%: 24,4%-42,2%). Observamos una elevación en la PAS ó en la PAD en el 44,2% (IC95%: 35,1%-53,8%) de la población hipertensa, así como un 23,1% (IC95%: 16,0%-32,0%) con elevación en ambas determinaciones. No hallamos diferencias estadísticamente significativas en la distribución de estas relaciones según la variable Sexo \((\chi^2 = 1,420; p = 0,492) \). Estos resultados se representan las figuras 41 y 42.
Complementando los resultados anteriores, analizamos las cifras de tensión arterial (PAS y PAD) en el conjunto de pacientes que se encontraban en tratamiento antihipertensivo. La prevalencia de elevación simultanea de PAS y PAD en pacientes con tratamiento antihipertensivo previo fue del 20,7% (IC95%: 13,4% - 30,7%). La razón de prevalencias fue de 2,03 (IC95%: 1,22 – 3,38) comparado con personas sin tratamiento antihipertensivo. Del total de pacientes en tratamiento farmacológico para la HTA, el 35,4% (IC95%: 25,9%-46,2%) presentaron cifras en el rango de la normalidad. No se encontraron diferencias estadísticamente significativas al comparar tales resultados entre ambos sexos ($\chi^2 = 0,663; \ p = 0,718$). Estos resultados pueden visualizarse en los gráficos 43 y 44.

Diabetes Mellitus: Se recogió información del total de la muestra. En ella, el 5,9% (IC95%: 4,1%-8,3%) de los individuos de la muestra (n=29) reconocieron un diagnóstico previo de Diabetes Mellitus. La muestra de personas diabéticas conocidas estuvo formada, casi en sus dos terceras...
partes (65,5%, IC95%: 47,3%-80,1%) por mujeres (n = 19) y, tan sólo, por 10 personas del género masculino, quienes representaban el 34,5% (IC95%: 19,9%-52,7%). Tan solo 2 individuos del total de la muestra (0,4%; IC95%: 0,1% - 1,5%), sin antecedentes de DM presentaron glucemias por encima de 200 mg/dl. En el total de la población femenina, se encontró una proporción de personas diabéticas del 5,9% (IC95%: 3,8%-9,1%), mientras que en el género masculino fue del 5,8% (IC95%: 3,2%-10,4%). No se encontraron diferencias estadísticamente significativas en la proporción de diabetes entre ambos sexos ($\chi^2 = 0,002; p = 0,962$).

Se obtuvieron datos sobre los niveles de azúcar en sangre (glucemia) de 495 personas. Como puede observarse en la figura 47, la variable glucemia no siguió una distribución normal (S-W test: p < 0,001).

![Figura 45. Distribución de DM conocida en la muestra global.](image)

![Figura 46. Distribución de DM conocida, según la variable Sexo.](image)

![Figura 47. Distribución de la normalidad de la variable Glucemia en la muestra.](image)
La mediana en la muestra global se situó en 103 mg/dl (IQR: 21 mg/dl). La mediana de la glucemia en el sexo femenino fue de 102 mg/dl (IQR: 20 mg/dl) y de 105 mg/dl (IQR: 21 mg/dl) en el sexo masculino, no hallándose diferencias estadísticamente significativas entre ambos sexos ($W_{glucemia}=1,529$, $p_{glucemia}=0,126$).

Entre los paciente diabéticos (n=29), la mediana de glucemia en el momento del análisis fue de 124 mg/dl (IQR: 41 mg/dl) comparado con 102 mg/dl (IQR: 20 mg/dl) en las personas sin tal condición, observando diferencias significativas entre las medias de glucemia de personas sanas y la de los individuos diabéticos del estudio ($W_{glucemia}=4,667; p_{glucemia}<0.001$).
- **Dislipemias:** Respecto a los antecedentes de dislipemia contestaron 492 participantes. La prevalencia de dislipemia en la población fue del 31,7% (IC 95%: 27,8%-36,0%). De ellos, el 30,8% (IC95%: 24,1%-38,4%) fueron varones y hasta el 69,2% (IC95%: 61,6%-75,9%) fueron mujeres. No hubo ningún individuo que respondiera negativamente y, sin embargo, se encontrara en tratamiento hipolipemiantente.

La prevalencia de dislipemia fue del 33,6% (IC95%: 28,7%-39,0%) y 28,1% (IC95%: 21,9%-35,2%) de la población femenina y masculina, respectivamente. No se observaron diferencias en la proporción de personas dislipémicas entre ambos sexos ($\chi^2 = 1,601; p = 0,206$).

Por otro lado, el 34,2% (IC95%: 27,6%-42,4%) del total de los individuos con tal condición se encontraban en tratamiento farmacológico hipolipemiantente. Este subgrupo de dislipémicos en tratamiento eran en un 79,6% (IC95%: 67,1% - 88,2%) mujeres y en un 20,4% (IC95%: 11,8% - 32,9%) varones. Se hallaron diferencias estadísticamente significativas
(χ² = 4,193; p = 0,041) entre la proporción de mujeres y varones en tratamiento hipolipemiante (22,9% vs 39,8%).

Fijándonos en los parámetros analíticos determinados a los participantes, se obtuvieron datos acerca del colesterol total, c-LDL, c-HDL y triglicéridos para 493, 454, 493 y 492 individuos respectivamente. En los gráficos 56 a 59 se muestran la distribución que sigue cada variable.

Figura 54. Prevalencia de TtoDLP en la muestra de estudio.

Figura 55. Prevalencia de TtoDLP según la variable Sexo.

Figura 56. Distribución de la variable Colesterol total.

Figura 57. Distribución de la variable Colesterol unido a HDL.

Figura 58. Distribución de la variable Colesterol unido a LDL.

Figura 59. Distribución de la variable Triglicéridos.
La mediana de los niveles de colesterol en sangre de la muestra global fue de 218 mg/dl (IQR: 56 mg/dl), considerando que el 67% de la muestra presentaba un colesterol >200 mg/dl (percentil 33), como refleja la figura 53. La mediana del colesterol total en las mujeres fue de 217 mg/dl (IQR: 53 mg/dl) y de 219,5 mg/dl (IQR: 62,5 mg/dl) en los varones. No se hallaron diferencias significativas entre las medias de colesterol total de ambos sexos ($W_{\text{col total}} = 0,284; p_{\text{col total}} = 0,776$). Estos resultados quedan referenciados en la figura 60.

De otro lado, la mediana global de colesterol unido a lipoproteínas de baja densidad (c-LDL) fue de 127 mg/dl (IQR: 50 mg/dl). Las mujeres obtuvieron una mediana de 122 (IQR: 50 mg/dl) y los varones de 133 mg/dl (IQR: 49 mg/dl). Se encontraron diferencias entre las medias de c-LDL entre ambos sexos, no claramente significativas ($W_{\text{ldl}} = 1,864; p_{\text{ldl}} = 0,062$). Los resultados se representan la figura 61.

El 47,2% (IC95%: 42,5% – 51,9%) de las personas no diabéticas con c-LDL estimable ($n = 426$) presentaron unos niveles de c-LDL por encima
de 130 mg/dl. De ellos, el 10,5% (IC95%: 7,0% - 15,5%) se encontraban en tratamiento hipolipemiantente. Teniendo en cuenta los niveles deseables de c-LDL para la población diabética y no diabética, del global de la población a estudio en que pudo estimarse el c-LDL (n = 454), el 48,9% (IC95%: 44,3% - 53,5%) presentó niveles más altos de los que deberían. De todos ellos, tan solo el 11,5% (IC95%: 8,9% - 14,7%) se encontraban en tratamiento hipolipemiantente. No se encontraron diferencias significativas en el control de c-LDL entre la población con o sin tratamiento farmacológico ($\chi^2 = 0,035; p = 0,852$).

De igual manera, la media global observada de colesterol unido a lipoproteínas de alta densidad (c-HDL) fue de 59,2 (sd: 17,1). Las mujeres presentaron una media de 64,4 mg/dl (sd: 15,9 mg/dl) y los varones de 49,4 mg/dl (sd: 14,8 mg/dl). Tales diferencias fueron estadísticamente significativas ($t_{hull} = 10,257; p_{hull} < 0,001$), como demuestra el gráfico 64.

Analizando los niveles de triglicéridos en sangre, la mediana global fue de 148,5 mg/dl (IQR: 120,5 mg/dl). Para el sexo femenino, sin embargo, fue
de 138 mg/dl (IQR: 116 mg/dl), mientras que para el masculino fue de 166 mg/dl (IQR: 121 mg/dl). Tales diferencias tuvieron relevancia a nivel estadístico ($W_{tg} = 3,151; p_{tg} = 0,002$).

Figura 65. Distribución de los niveles séricos de los triglicéridos en la muestra global y según la variable Sexo.

Debido a la interferencia fisiopatológica que se conoce entre la condición de DM y el Tabaquismo y la Dislipemia, analizamos los perfiles lípidos en los pacientes con tales condiciones. De esta manera, los separamos según cada condición:

a) Diabéticos:

- La mediana de colesterol total en la población diabética fue de 228 mg/dl (IQR: 49 mg/dl). No existieron diferencias significativas respecto a los niveles de colesterol de la población sana ($W_{col|DM}: 1,446; p= 0,148$).

- La mitad de los diabéticos presentaron niveles de colesterol unido a LDL menores o iguales a 135 mg/dl (IQR: 64 mg/dl). El 75% (IC95%: 56,6% - 87,3%) de las personas diabéticas con c-LDL estimable ($n = 28$) presentaron niveles de c-LDL mayores a 100 mg/dl, contrastando con el 47,2% de la población sana y siendo estadísticamente significativa tal diferencia ($\chi^2 = 8,136; p = 0,004$). De los pacientes diabéticos con c-LDL elevado, estaban siendo tratados tan solo cinco de ellos.
La media de c-HDL fue de 54,9 mg/dl (sd: 16,1 mg/dl) en la población diabética. Sin embargo, y teniendo en cuenta el rango de c-HDL a partir del cual se modifica el riesgo cardiovascular, la prevalencia de c-HDL alto en la población sin DM fue del 51,1% (IC95%: 46,5% - 55,6%), observando un 23,5% (IC95%: 4,8% - 37,1%) menos de personas con DM conocida, de forma estadísticamente significativa ($\chi^2 = 6,025; \ p = 0,014$). No hubo diferencias en la proporción de diabéticos y no diabéticos (6,9% vs 6,7%) con niveles de c-HDL <35 mg/dl ($p = 1,000$).

Respecto a los niveles séricos de triglicéridos, la mediana en la población diabética fue de 199 mg/dl (IQR: 120 mg/dl). Se encontraron diferencias estadísticamente significativas entre las medias de la población con y sin diabetes ($W_{tg} = 2,420, \ p_{tg} = 0,020$), siendo la media mayor en la población diabética (206,3 mg/dl vs 168,9 mg/dl).

En la figura 67 se muestra un gráfico comparativo del perfil lipídico en personas con y sin DM.
b) Fumadores:

- Tal y como observamos en la figura 59, el 50% de los fumadores presentaron valores de colesterol total iguales o menores a 206 mg/dl (IQR: 57 mg/dl). Respecto a los no fumadores, de media presentaron 10,7 mg/dl de colesterol total (IC95%: 0,1 mg/dl – 21,3 mg/dl) de forma significativa ($W_{\text{coltotal}} = 2,427; \ p_{\text{coltotal}} = 0,015$).

- La mediana del colesterol unido a LDL fue de 117 mg/dl (IQR: 52 mg/dl). Observando la proporción de fumadores con niveles de c-LDL elevado, existía hasta un 18,1% menos de individuos que en los no fumadores (IC95%: 4,8% - 29,6%), siendo tales diferencias estadísticamente significativas ($\chi^2 = 7,093; \ p = 0,008$).

- La media de c-HDL fue de 59,2 mg/dl (sd: 18,2 mg/dl), sin apreciar diferencias estadísticamente significativas con la población no fumadora en la comparación de sus medias($t_{\text{hdlgfun}}= 0,023, \ p = 0,982$), ni en la comparación de las
proporiones entre cada categoría de los niveles de c-HDL (bajo, normal o alto) entre ambos grupos ($\chi^2_{\text{tendencia lineal}} = 0,000; p = 0,998$).

- La mediana de triglicéridos en sangre fue de 138 mg/dl (IQR: 131 mg/dl). Al comparar las medias de triglicéridos entre fumadores y personas sin tal hábito, no se encontraron diferencias estadísticamente relevantes ($W_{lg|fum} = 0,929; p = 0,353$).

Representamos el perfil lipídico comparativo entre personas fumadoras y no fumadores en la figura 68.

![Perfil lipídico](image)

Figura 68. Distribución del perfil lipídico según el **Tabaquismo**.
7A.2.- ENFERMEDADES CARDIOVASCULARES.

Con el fin de valorar la representatividad de la población española en nuestra muestra de estudio (validez externa), analizamos la prevalencia de las enfermedades cardiovasculares en la muestra inicial de 653 participantes, de la que finalmente se depuró la muestra de estudio.

Obtuvimos información de 651 individuos sobre “cardiopatía isquémica” y “enfermedad cerebrovascular” previas, así como de 650 individuos sobre “enfermedad arterial periférica”. Un total de 135 individuos, el 20,7% de la población (IC95%: 17,7% - 23,9%), habían presentado al menos una de las manifestaciones cardiovasculares previamente comentadas, según muestra la figura 69.

La prevalencia de al menos una manifestación de ECV en la población femenina fue del 22,6% (IC95%: 18,9% - 26,8%) y en la masculina del 17,0% (IC95%: 12,6% - 22,4%) sin que tales diferencias fueran estadísticamente significativas ($\chi^2 = 2,861; p = 0,091$).

Entre la población que había padecido alguna ECV, la EAP fue la manifestación más frecuente, hallándose en el 58,5% (IC95%: 50,1% - 66,5%), seguido de la Ecor con una prevalencia en la población enferma del 46,7% (IC95%: 38,5% - 55,1%) y del ACV con un 15,6% (IC95%: 10,4% - 22,6%). Esta distribución de las manifestaciones cardiovasculares se ilustra en la figura 71.
Según el sexo, encontramos algunas diferencias en la prevalencia de las ECV como puede apreciarse en la figura 72.

En la población femenina con alguna ECV la distribución de las ECV no sufrió variación respecto a la distribución en la muestra global. La mayor prevalente fue la Arteriopatía periférica (EAP), presentada en el 61,9% (IC95%: 52,0% - 70,9%) de las mujeres, seguida de la Enfermedad coronaria (Ecor) con una frecuencia del 41,2% (IC95%: 32,0% - 51,2%) y la Enfermedad coronaria (ACV) en un 14,4% (IC95%: 8,8% - 22,8%). Sin embargo, en la población masculina con ECV, la manifestación cardiovascular más prevalente fue la Ecor observada en un 60,5% (IC95%: 44,7% -
74,4%), seguida de la EAP con una prevalencia del 50,0% (IC95%: 34,8% - 65,2%) y por el ACV presenciada en un 18,4% (IC95%: 9,2% - 33,4%). No obstante, de las anteriores diferencias únicamente alcanzó la significancia estadística la enfermedad coronaria ($\chi^2 = 4,082; p = 0,043$).

Por otro lado, tales manifestaciones cardiovasculares no se presentaron de forma exclusiva en los individuos. Hasta un 18,5% de las manifestaciones cardiovasculares se comunicaron asociadas a otras. El 12,6% (IC95%: 8,0% - 19,2%) tenían antecedentes de cardiopatía isquémica y EAP. La cardiopatía isquémica se asoció al ACV en un 1,5% (IC95%: 0,4% - 5,2%), mientras que hasta en un 2,2% (IC95%: 0,8% - 6,3%) respondieron afirmativamente a las 3 manifestaciones. En un 2,2% (IC95%: 0,8% - 6,3%) de los pacientes con ACV se observó que presentaban también EAP, como se muestra en la figura 73.

![Figura 73. Distribución de las principales manifestaciones de ECV y sus combinaciones en la población inicial.](image)

A continuación se detalla, por separado, cada una de las manifestaciones cardiovasculares.

7A.2.1.- ENFERMEDAD ARTERIAL PERIFERICA

La prevalencia de la EAP en la población global inicial fue del 12,2% (IC95%: 9,9% - 14,9%), si bien aumentó al 17,6% (IC95%: 13,9% - 21,9%) en población con edades entre los 55 y 84 años de edad. La mediana de edad en pacientes con antecedentes de EAP fue de 66,5 años (IQR: 14 años), mientras que la de personas sin tal condición fue de 55,5 años (IQR: 29). Estas diferencias en la edad de personas sin y con la condición comentada fueron estadísticamente
significativa ($W_{eapprevia | edad} = 5.099; p_{eapprevia | edad} < 0.001$), tal como demuestra la figura 74.

La prevalencia de EAP en la población femenina fue del 14,0% (IC95%: 11% - 17,6%), contrastando con la hallada en la población masculina que fue del 8,6% (IC95%: 5,5% - 13,0%), como puede apreciarse en la figura 74, siendo estadísticamente significativo ($\chi^2_{eap | sexo} = 4,082; p_{eap | sexo} = 0,043$).

Si analizamos la asociación de la EAP con los factores de riesgo cardiovasculares no encontramos:

- **Hipertensión arterial**: la población con HTA conocida tuvo una prevalencia de EAP del 13,0% (IC95%: 9,9% - 14,9%) ligeramente mayor respecto a la población sin HTA conocida: 11,9% (IC95%: 9,3% - 15,0%). Se consideró como población con HTA conocida, además de las que respondieron afirmativamente, también a aquellas personas que desconocían padecer HTA y, sin embargo, se encontraban en tratamiento antihipertensivo. Aún así, tales diferencias no llegaron a la significación estadística ($\chi^2_{eap | hta} = 0,131; p_{eap | hta} = 0,717$).
Entre la población con EAP previa objetivamos un 25,3% (IC95%: 17,0% - 35,9%) de personas hipertensas frente al 23,5% (IC95%: 20,2% - 27,1%) en el grupo de individuos sin EAP previa, como se muestra en la figura 77, aunque estas diferencias no fueron significativas (PR: 1,08; IC95%: 0,72 – 1,62).

- **Tabaquismo**: La población fumadora obtuvo una prevalencia de EAP previa del 11,5% (IC95%: 6,5% - 19,4%), menor que la obtenida por los no fumadores que fue del 12,3% (IC95%: 9,8% - 15,3%). No obstante no se resultó estadísticamente significativo ($\chi^2_{\text{EAP | Fum}} = 0,051; p_{\text{EAP | Fum}} = 0,821$). Asimismo, la prevalencia de tabaquismo entre los pacientes con EAP fue del 13,9% (IC95%: 8,0% - 23,2%). En los individuos sin tal condición del 14,9% (IC95%: 12,2% - 18,0%). Estas diferencias no fueron estadísticamente significativas (PR: 0,94; IC95%: 0,52 – 1,67).

Tales resultados se representan en las figuras 78 y 79.
- **Dislipemia:** Un 9,5% de los dislipémicos (IC95%: 6,2% - 14,3%) respondieron afirmativamente a tener antecedente de EAP (figura 80). En los individuos que reconocieron no padecer dislipemia, la EAP se presentó en un 13,4% (10,6% - 16,9%), resultando tales diferencias entre ambos grupos estadísticamente significativas ($\chi^2_{\text{cap} | \text{dlp}} = 2,037; p_{\text{cap} | \text{dlp}} = 0,153$). De forma análoga a los pacientes hipertensos, se consideró como población con DLP conocida, también a aquellas personas que desconocían padecerla y, sin embargo, se encontraban en tratamiento hipolipemiante. Por otro lado, la prevalencia de DLP entre la población carente de antecedente de EAP fue del 33,3% (IC95%: 29,6% - 37,3%), mientras que la observada en la población con EAP previa fue del 25,3% (IC95%: 17,0% - 35,9%). Estas diferencias no alcanzaron la significación estadística (PR: 1,32; IC95%: 0,89 – 1,96).

Figura 80. Prevalencia del antecedente de EAP según la variable DLP conocida.

Figura 81. Prevalencia de DLP conocida según el antecedente de EAP.

- **Diabetes Mellitus:** Los diabéticos tuvieron 2,41 veces más alta la prevalencia de EAP que los no diabéticos (IC95%: 1,41 – 4,11). De tal forma, la prevalencia de EAP en la población diabética fue del 26,7% (IC95%: 16,0% - 41,0%), mientras que en la no diabética fue del 11,1% (IC95%: 8,8% - 13,8%).
El estadístico Chi-cuadrado demostró la significación estadística ($\chi^2_{\text{cap | dm}} = 9.538$; $p_{\text{cap | dm}} = 0.002$). Por otro lado, la prevalencia de DM en la población con EAP previa fue del 15,2% (IC95%: 8,9% - 24,7%) frente al 5,8% (IC95%: 4,1% - 8,0%) de la población sin EAP previa, siendo tales diferencias significativas (PR: 2,63; IC95%: 1,42 – 4,87).

7A.2.2.- CARDIOPATÍA ISQUÉMICA

La prevalencia de cardiopatía isquémica en la población global inicial fue del 9.7% (IC95%: 7.6% - 12.1%), si bien si la analizamos en personas entre 45 y 74 años, la prevalencia aumenta hasta el 11,9% (IC95%: 9,0% - 15,4%). La mediana de edad en pacientes con cardiopatía isquémica fue de 70 años (IQR: 10 años), mientras que la de personas sin tal entidad de 56 años (IQR: 28,5 años), siendo tales diferencias estadísticamente significativas ($W_{\text{edad|ciprevia}} = 7.704$; $p_{\text{edad|ciprevia}} < 0.001$).

El 9,3% de las mujeres presentaron tal manifestación (IC95%: 6,9% - 12,4%), mientras que su presencia fue del 10,4% (IC95%: 7,0% - 15,1%) en la población masculina, no siendo relevante desde el punto de vista estadístico ($\chi^2_{\text{ciprevia | sexo}} = 0.180$; $p_{\text{ciprevia | sexo}} = 0.672$). Estos resultados se representan en los gráficos 84 y 85.
Respecto a los factores de riesgo cardiovascular:

- **Hipertensión arterial:** la población con HTA conocida tenía una prevalencia 3,1 veces mayor (IC95%: 2,0 – 5,0) de haber tenido un evento coronario respecto a la población sin conocimiento de padecer HTA. Estos resultados fueron estadísticamente significativos \(\chi^2_{\text{ciprevia} | \text{hta}} = 25,213; p_{\text{ciprevia} | \text{hta}} < 0,001 \). La prevalencia de HTA conocida en la población con enfermedad coronaria previa fue del 49,0% (IC95%: 37,3% - 61,2%) frente al 20,9% (IC95%: 17,8% - 24,4%) encontrada en la población sin eventos coronarios previos, como demuestra la figura 87. Estos resultados fueron de igual manera estadísticamente significativos (PR: 2,35; IC95%: 1,75 – 3,16).
Diabetes Mellitus: encontramos un 11,1% más de cardiopatía isquémica comparando la población diabética con la no diabética (IC95%: 1,6% - 25,1%), siendo tales diferencias estadísticamente significativas \((\chi^2_{ciprevia \mid dm} = 5,893; p_{ciprevia \mid dm} = 0,031) \). La prevalencia de tal condición se multiplicaba por 2,24 (IC95%: 1,19 – 4,25) en la población diabética respecto a la no diabética.

Dislipemia: la población con dislipemia conocida presentó una prevalencia del 12,9% (IC95%: 9,0% - 18,1%), mayor respecto a la población sin dislipemia conocida, que fue del 8,2% (IC95%: 6,0% - 11,1%). Sin embargo, tales diferencias no llegaron a la significación estadística \((\chi^2_{ciprevia \mid dlp} = 3,550; p_{ciprevia \mid dlp} = 0,060) \). De otra parte, la prevalencia de dislipemia según presentasen o no la condición a estudio fue del 42,6% (IC95%: 31,4% - 55,1%) y del 31,2% (IC95%: 27,6% - 35,0%), respectivamente, con una razón de prevalencias del 1,37 (IC95%: 1,01 – 1,87).
- **Tabaquismo**: respecto a su asociación con el tabaquismo, no encontramos diferencias significativas en la prevalencia de C. Isquémica previa según los pacientes fueran o no fueran fumadores ($\chi^2_{	ext{ciprevia}|\ fum} = 1,590; \ p_{\text{ciprevia}|\ fum} = 0,207$), siendo la prevalencia en la población no fumadora del 10,3% (IC95%: 8,0% - 13,1%) y en la fumadora del 6,2% (IC95%: 2,9% - 12,8%). El tabaquismo se halló en el 15,5% (IC95%: 12,8% - 18,6%) de la población con C. Isquémica previa frente al 9,5% (IC95%: 4,4% - 19,3%) de la población sin tal condición, sin llegar a la significación estadística (PR: 1,63; IC95%: 0,74 – 3,56).
7A.2.3.- ENFERMEDAD CEREBROVASCULAR

La prevalencia de enfermedad cerebrovascular en la población inicial fue del 3,2% (IC95%: 2,1% - 4,9%), mientras que aumentó hasta el 5,2% (IC95%: 3,0 – 8,9%) en personas mayores de 65 años. La mediana de edad en pacientes con ACV fue de 67,5 años (IQR: 11 años), mientras que la de la población sin enfermedad vascular cerebral fue de 57,5 años (IQR: 28). La comparación de las medias de edad entre ambos grupos fue estadísticamente significativa ($W_{edad|ACV} = 2,971; p_{edad|ACV} = 0,003$). Comparando la prevalencia de ACV entre ambos sexos, no encontramos diferencias significativas ($\chi^2_{ecvprevia|sexo} = 0,006; p_{ecvprevia|sexo} = 0,940$), como puede apreciarse en la figura 95.

![Distribución de la variable Edad según ACV previo](image1)
![Prevalencia de ACV según la variable Sexo](image2)

Figura 94. Diferencias en la Edad media de los individuos según la variable ACV previa.

Figura 95. Prevalencia de ACV según la variable Sexo.

En cuanto a los factores de riesgo cardiovascular y sus asociaciones con la enfermedad cerebrovascular:

- **Hipertensión arterial:** La HTA se encontró en un 61,9% (IC95%: 40,9% - 79,2%) en la población con ACV previo, respecto al 22,4% (IC95%: 19,3% - 25,9%) de hipertensos en las personas sin ACV previo. Tales diferencias fueron estadísticamente significativas (PR: 2,77; IC95%: 1,92 – 3,99). La prevalencia de ACV en la población con HTA fue del 8,4% (IC95%: 5,0% - 13,9%) frente al 1,6% (IC95%: 0,8% - 3,1%). Estos resultados fueron estadísticamente significativos ($\chi^2_{ecvprevia|hta} = 17,579; p_{ecvprevia|hta} <0,001$).
Diabetes Mellitus: La diabetes se encontró en el 9,5% (IC95%: 2,7% - 28,9%) de las personas con antecedentes de ACV previo. Comparando tal proporción con la prevalencia de DM en la población sin ACV previo, que fue del 6,8% (IC95%: 5,1% - 9,1%), no encontramos diferencias significativas (PR: 1,40, IC95%: 0,36 – 5,38).

Por otro lado, recogimos una prevalencia de ACV previo en la población diabética del 4,4% (IC95%: 1,2% - 14,8%) y del 3,1% (IC95%: 2,0% - 4,8%) en la población no diabética, sin significación estadística entre tales resultados ($\chi^2 _{cvprevia|dm} = 0,230$; $p_{cvprevia|dm} = 0,650$).

Dislipemia: La prevalencia de dislipemia en la población con ACV previa fue del 42,9% (IC95%: 24,5% - 63,5%), mientras que en la población sin tal antecedente fue del 32,0% (IC95%: 28,4% - 35,7%). Las diferencias encontradas no alcanzaron la significación...
estadística (PR: 1,34; IC95%: 0,81 – 2,23). De igual manera, la prevalencia de ACV en los pacientes dislipémicos aunque fue mayor, 4,3% (IC95%: 2,3% - 7,9%) vs 2,7% (IC95%: 1,6% - 4,7%), no difirió significativamente \(\chi^2_{dlp \mid ecvprevia} = 1,104; p_{dlp \mid ecvprevia} = 0,293 \) respecto a la presentada por los pacientes sin DLP.

Tabaquismo: respecto a su asociación con el tabaquismo, no encontramos diferencias significativas en la prevalencia de ACV \(\chi^2_{ecvprevia \mid fum} = 1,358; p_{ecvprevia \mid fum} = 0,244 \), siendo la prevalencia en la población no fumadora del 2,9% (IC95%: 1,8% - 4,6%) y en la fumadora del 5,2% (IC95%: 2,2% - 11,5%). Respecto a la exposición, el tabaquismo estuvo presente en el 23,8% (IC95%: 10,6% - 45,1%) de las personas con ACV previo, respecto al 14,6% (IC95%: 12,1% - 17,6%) en las personas sin ACV previo, aunque no alcanzó la significación estadística (PR: 1,63%; IC95%: 0,74 – 3,59).
7B.-ESTIMACION DEL RIESGO CARDIOVASCULAR EN LA MUESTRA.

Teóricamente podríamos diferencias tres tipos de individuos según la aplicabilidad de los modelos de estimación del riesgo cardiovascular: aplicables estrictos o per sé, rescatados o perdidos.

- Los individuos aplicables, son aquellos en los que, siguiendo los pasos indicados por cada modelo y ciñéndose a la información que aparece en cada cual (sin tener que asumir información), se les ha podido estimar el RCV.

- Los individuos que podríamos llamar rescatados, son aquellos en los que se ha tenido que asumir un riesgo cardiovascular que, sin ser el estrictamente real, se asemeja al más cercano posible para el que tenemos información. En nuestro caso, tras la selección muestral, se deberán a personas con edad no integrada en los límites superior e inferior de cada modelo. El valor mínimo y máximo de edad fue de 18,5 y 98,5 años (cumplidos corregidos) para todos los modelos.

- Los individuos perdidos, son aquellos en los que no fue posible la estimación del RCV.

Por consiguiente, el número de individuos pertenecientes a las categorías previamente descritas fue diverso para cada modelo, según se aprecia en la figura 104.

![Diagrama de la aplicación de los modelos de estimación del RCV en nuestra muestra.](image_url)
7B.1.-MODELO FRAMINGHAM

La estimación del RCV por el modelo de Framingham-Wilson presentó una aplicabilidad estricta del 76,3% (IC95%: 72,3% - 79,8%). Se rescataron un total de 117 individuos por edad fuera de rango. De ellos, 72 individuos presentaban una edad menor a 30 años y el resto, 45 individuos, edad superior a 74 años. La aplicabilidad final fue del 100%.

Los valores del modelo de Framingham no siguieron una distribución normal, como puede observarse en la figura 105.

![Gráfico de distribución del RCV según el modelo de Framingham](image)

La mediana de RCV por Framingham se situó en 5,9% (IQR: 9,1%) lo que se traduce en la existencia de un RCV global bajo predominante para la muestra. Observamos un RCV bajo, según el modelo a estudio, en el 70,0% (IC95%: 65,8% - 73,9%) de la muestra. El 19,5% (IC95%: 16,2% - 23,2%) obtuvo un RCV moderado y hasta el 10,5% (IC95%: 8,1% - 13,6%) de la muestra un RCV alto, tal como se presenta en la tabla 4.

| Tabla 4. Distribución de los distintos grados del RCV en la muestra según el modelo Framingham |
|---|-------------------|------------------|
| **Modelo Framingham** | **Riesgo cardiovascular** | |
| | **Bajo** | **Moderado** | **Alto** |
| **Proporción** | 70,0% | 19,5% | 10,5% |
| **Muestral** | (IC95%: 65,8% - 73,9%) | (IC95%: 16,2% - 23,2%) | (IC95%: 8,1% - 13,6%) |
Analizando la distribución del RCV según el género de las personas, hallamos diferencias estadísticamente significativas ($\chi^2_{RCV-Framingham | \text{sexo}} = 84,582; \ p_{RCV-Framingham | \text{sexo}} <0,001$). De tal manera, en la población femenina encontramos un 83,2% (IC95%: 78,7% - 86,9%) con RCV bajo, un 13,4% (IC95%: 10,1% - 17,6%) de RCV moderado y, tan solo, un 3,4% (IC95%: 1,9% - 6,0%) de RCV alto. De forma paralela, para la población masculina las proporciones en orden ascendente fueron del 45,3% (IC95%: 38,1% - 52,8%) para el riesgo bajo, 30,8% (IC95%: 24,4% - 38,1%) para el moderado y 23,8% (IC95%: 18,1% - 30,7%) para el alto.

![Distribución de RCV-Framingham](image)

Figura 106. Distribución del RCV estimado por Framingham según la variable Sexo.

En cuanto a la distribución del RCV para la población diabética, casi la mitad presentaron un RCV alto (48,3%; IC95%: 31,4% - 65,6%), existiendo una clara diferencia significativa ($\chi^2_{RCV-Framingham \text{ alto} | \text{dmconoc}} = 46,485; \ p_{RCV-Framingham \text{ alto} | \text{dmconoc}} <0,001$), respecto a la población no diabética en que se presenta en un 8,2% (IC95%: 6,0% - 11,0%). En la tabla 5 se resume la distribución del RCV según la presencia o ausencia de la condición DM conocida.

<table>
<thead>
<tr>
<th>Modelo Framingham</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>DM conocida</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RCV Bajo</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Sí</td>
</tr>
</tbody>
</table>

Tabla 5. Distribución de los grados del RCV estimado por el modelo Framingham según la condición DM conocida.
7B.2.-MODELO SCORE

La aplicabilidad estricta en la estimación del RCV por el modelo europeo fue del 40,6% (IC95%: 36,3% - 45,0%). Se rescataron un total de 264 individuos por edad fuera de rango, el 53,5% (IC95%: 49,1% - 57,9%), de los que 135 individuos presentaban una edad menor a 40 años y 129 individuos una edad superior a 65 años. A la población diabética (n=29) le fue asignada una estimación del riesgo cardiovascular en grado alto, teniendo en cuenta la consideración que le otorga la ESC por el mero hecho de presentar tal condición. La aplicabilidad final fue del 100%

De igual manera que con Framingham, los valores del modelo SCORE no siguieron una distribución normal, como se muestra en la figura 107.

![Figura 107. Distribución del RCV según el modelo SCORE en nuestra muestra.](image)

El 50% de los individuos con RCV estimado por SCORE presentaron un riesgo estimado menor o igual a 1% (IQR: 2%), sin tener cuenta a los diabéticos. Tras la asignación del RCV por SCORE a los diabéticos, observamos que, de los 493 individuos, hasta el 70% de la muestra, IC95%: 65,8% - 73,9%, presentó un RCV correspondiente al grado bajo, frente al 13,8% (IC95%: 11,0% - 17,1%) al que se le asignó un grado moderado y, al 16,2% (IC95%: 13,2% - 19,7%) que perteneció al grado alto. Estos resultados de presentan en la tabla 6.

Por otro lado, analizando las diferencias en la proporción de personas con los distintos grados de RCV según el modelo SCORE que pertenecían a los distintos sexos, encontramos diferencias estadísticamente significativas ($\chi^2_{RCV\text{-SCORE} \mid \text{sexo}} = 42,360; p_{RCV\text{-SCORE} \mid \text{sexo}} < 0,001$).
Tabla 6. Distribución del RCV en la muestra según el modelo SCORE

<table>
<thead>
<tr>
<th>Riesgo cardiovascular</th>
<th>Bajo</th>
<th>Moderado</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporción Muestral (global)</td>
<td>70,0%</td>
<td>13,8%</td>
<td>16,2%</td>
</tr>
<tr>
<td></td>
<td>(IC95%: 65,8% - 73,9%)</td>
<td>(IC95%: 11,0% - 17,1%)</td>
<td>(IC95%: 13,2% - 19,7%)</td>
</tr>
</tbody>
</table>

Encontramos en la población femenina que el 79,8% (IC95%: 75,0% - 83,8%) presentó un RCV bajo, un 28,0% más que la población masculina (IC95%: 19,3% - 36,5%). Por otra parte, en cuanto a la prevalencia de RCV moderado fue mayor en el género masculino con una diferencia de proporciones del 11,0% (IC95%: 4,7% - 18,2%) siendo estas diferencias significativas desde el punto de vista estadístico ($\chi^2_{RCV\text{-}SCORE\,moderado\,|\,sex} = 11,317; p_{RCV\text{-}SCORE\,moderado\,|\,sex} = 0,001$). El género masculino multiplicaba por 2,7 la prevalencia de presentar un RCV alto según el modelo de SCORE (IC95%: 1,8 – 4,0).

![Distribución de SCORE categorizada por Sexo](image)

Figura 108. Distribución del RCV estimado por $SCORE$ según la variable $Sexo$.
7B.3.-MODELO REGICOR

Trescientas cuarenta individuos participaron en la aplicación estricta del modelo REGICOR para la estimación del RCV, lo que supuso un 69,0% de la muestra (IC95%: 64,7% - 72,9%). Sin embargo, 108 individuos menores a 34 años, así como 45 individuos mayores a 74 años de edad, pudieron beneficiarse del rescate mediante la aproximación por la edad. La aplicabilidad final fue del 100%.

Los valores del modelo REGICOR tampoco consiguieron una distribución normal, como puede observarse en la figura 109.

![Figura 109. Distribución del RCV según el modelo REGICOR en nuestra muestra.](image)

La mediana de RCV por Framingham se situó en el 3% (IQR: 3,5%). En cuanto a los grados del RCV según el modelo a estudio, el 70,6% (IC95%: 66,4% - 74,4%) de la muestra presentó un riesgo bajo, mientras que el 23,5% (IC95%: 20,0% - 27,5%) obtuvo un RCV moderado y, tan solo, el 5,9% (IC95%: 4,1% - 8,3%) de la muestra un RCV alto, tal como se presenta en la tabla 7.

<table>
<thead>
<tr>
<th>Modelo REGICOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riesgo cardiovascular</td>
</tr>
<tr>
<td>Bajo</td>
</tr>
<tr>
<td>Proporción</td>
</tr>
<tr>
<td>Muestral (IC95%: 66,4% - 74,4%)</td>
</tr>
</tbody>
</table>
De la misma manera previa, analizamos la distribución del RCV según el sexo de las personas. Pertenecer al género femenino multiplicaba por 1,3 la prevalencia de tener un riesgo bajo (IC95%: 1,2 - 1,5), mientras que ser varón lo hacía por 1,5 en la prevalencia de obtener un riesgo moderado en la estimación (IC95%: 1,1 - 2,1) y hasta por 4,1 (IC95%: 1,9 - 8,9). Estas diferencias entre los distintos grados del RCV fueron estadísticamente significativas ($\chi^2_{RCV\text{-}REGICOR|\text{sexo}} = 25,669$; $p_{RCV\text{-}REGICOR|\text{sexo}} < 0,001$)

Figura 110. Distribución del RCV estimado por REGICOR según la variable Sexo.

En cuanto a la distribución del RCV para la población diabética, el 37,9% (IC95%: 22,7% - 56,0%) presentaron un RCV moderado y en la misma proporción un RCV alto, seguido del 24,1% (IC95%: 12,2% - 42,1%) con un RCV bajo. Estas diferencias fueron claramente significativas ($\chi^2_{RCV\text{-}REGICOR|\text{dmconoc}} = 65,936$; $p_{RCV\text{-}REGICOR|\text{dmconoc}} < 0,001$), respecto a la población no diabética. En la tabla 8 se resume la distribución del RCV según la presencia o ausencia de la condición DM conocida.

<table>
<thead>
<tr>
<th>Modelo REGICOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>DM conocida</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SI</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tabla 8. Distribución de los grados del RCV estimado por el modelo REGICOR según la condición DM conocida.
7B.4.-MODELO DORICA

La estimación del RCV por el modelo de DORICA presentó una aplicabilidad estricta del 61,5% (IC95%: 57,1% - 65,7%). Se rescataron un total de 190 individuos por edad fuera de rango, de los que 38 individuos presentaban una edad menor a 25 años y 152 individuos una edad superior a 64 años. La aplicabilidad final fue del 100%.

Los valores del modelo de DORICA no siguieron una distribución normal, tal y como demuestra la figura 111.

La mediana del riesgo por DORICA se situó en 5% (IQR: 7%) lo que se traduce en la asignación a la muestra de un riesgo global bajo. El 48,3% (IC95%: 43,9% - 52,7%) de la muestra presentó un riesgo bajo según DORICA, mientras que en otro 48,9% (44,5% - 53,3%) fue moderado y tan solo fue alto en un 2,8% (IC95%: 1,7% - 4,7%), como se presenta en la tabla 9.

Tabla 9. Distribución de los distintos grados del RCV en la muestra según el modelo DORICA

<table>
<thead>
<tr>
<th>Riesgo cardiovascular</th>
<th>Bajo</th>
<th>Moderado</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporción</td>
<td>48,3%</td>
<td>48,9%</td>
<td>2,8%</td>
</tr>
<tr>
<td>Muestral (global)</td>
<td>(IC95%: 43,9% - 52,7%)</td>
<td>(IC95%: 44,5% - 53,3%)</td>
<td>(IC95%: 1,7% - 4,7%)</td>
</tr>
</tbody>
</table>
Analizando la distribución del RCV según el género de las personas, hallamos diferencias estadísticamente significativas ($\chi^2_{\text{RCV-DORICA | sexo}} = 84,582; p_{\text{RCV-DORICA | sexo}} < 0.001$). Se observó un RCV bajo en un 57,3% de las mujeres (IC95%: 51,9% - 62,6%) mientras que esa proporción en los varones fue del 31,4% (IC95%: 24,9% - 38,7%). Por otro lado, el RCV medio en la población femenina se halló en el 41,1% (IC95%: 35,9% - 46,6%) frente al 63,4% (IC95%: 56,0% - 70,2%) en el sexo masculino y, tan solo el 1,5% de las mujeres presentó un riesgo alto (IC95%: 0,7% - 3,6%) frente al 5,2% en los varones (IC95%: 2,8% - 9,6%).

Por último, estudiamos la distribución del riesgo comparándolo con la población con DM conocida. Prácticamente la mitad de los no diabéticos presentaron un RCV bajo (50,6%; IC95%: 46,1% - 55,2%), frente al 48,3% a los que se estimó un riesgo moderado (IC95%: 43,8% - 52,8%) y al 1,1% (IC95%: 0,5% - 2,5%) correspondiente al riesgo alto. Respecto a los diabéticos, el 10,3% (IC95%: 3,6% - 26,4%) tuvieron un riesgo bajo, comparado con el 58,6% que presentaron un riesgo moderado y el 31,0% (IC95%: 17,3% - 49,2%) con riesgo alto.
7C.-RELACIONES ENTRE LA ESTIMACIÓN DEL RIESGO CARDIOVASCULAR Y LOS MODELOS DE ESTIMACIÓN USADOS.

7C.1.-ASOCIACIÓN ENTRE LOS MODELOS.

El estudiar la asociación existente entre el riesgo cardiovascular absoluto estimado por los diferentes modelos a estudio se realizó sobre 464 sujetos no diabéticos, ya que para los personas diabéticas no se disponía de riesgo estimado por SCORE. En el análisis encontramos una correlación global positiva e intensa entre todos los modelos, si bien, la mayor correlación observada fue entre REGICOR y DORICA (\(\rho = 0,955;\) \(p<0,001\)), seguida de Framingham-Wilson con DORICA y REGICOR, con unos coeficientes de correlación por Spearman de 0,928 y 0,914 \((p<0,001)\), respectivamente. La asociación disminuyó cuando se vio involucrado el modelo SCORE, como puede apreciarse en la tabla 10 y la figura 114.

<table>
<thead>
<tr>
<th>MODELOS CORRELACIONADOS</th>
<th>Coeficiente de correlación ((\rho))</th>
<th>Significación estadística</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGICOR-DORICA</td>
<td>0,955</td>
<td>(p<0,001^*)</td>
</tr>
<tr>
<td>FRAMINGHAM-DORICA</td>
<td>0,928</td>
<td>(p<0,001^*)</td>
</tr>
<tr>
<td>FRAMINGHAM-REGICOR</td>
<td>0,914</td>
<td>(p<0,001^*)</td>
</tr>
<tr>
<td>FRAMINGHAM-SCORE</td>
<td>0,775</td>
<td>(p<0,001^*)</td>
</tr>
<tr>
<td>SCORE-DORICA</td>
<td>0,767</td>
<td>(p<0,001^*)</td>
</tr>
<tr>
<td>SCORE-REGICOR</td>
<td>0,755</td>
<td>(p<0,001^*)</td>
</tr>
</tbody>
</table>

* Valor estadísticamente significativo

Figura 114. Rectas de regresión lineal entre los distintos modelos de estimación del riesgo cardiovascular.

Valorando la asociación entre los modelos según el sexo de los participantes no diabéticos observamos diferencias, sin embargo, únicamente fueron estadísticamente significativas la diferencia en las
correlaciones entre REGICOR-DORICA presentando mayor asociación en las mujeres y FRAMINGHAM-SCORE con mayor asociación en los hombres, como se muestra en la tabla 11.

Tabla 11. Asociación entre el riesgo cardiovascular estimado por los diferentes modelos, según el sexo.

<table>
<thead>
<tr>
<th>MODELOS CORRELACIONADOS</th>
<th>Coef. de correlación (Rho)</th>
<th>Significación estadística</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGICOR-DORICA</td>
<td>0,919</td>
<td>0,964</td>
</tr>
<tr>
<td>FRAMINGHAM-DORICA</td>
<td>0,893</td>
<td>0,922</td>
</tr>
<tr>
<td>FRAMINGHAM-REGICOR</td>
<td>0,910</td>
<td>0,905</td>
</tr>
<tr>
<td>FRAMINGHAM-SCORE</td>
<td>0,864</td>
<td>0,735</td>
</tr>
<tr>
<td>SCORE-DORICA</td>
<td>0,723</td>
<td>0,787</td>
</tr>
<tr>
<td>SCORE-REGICOR</td>
<td>0,769</td>
<td>0,766</td>
</tr>
</tbody>
</table>

Si tenemos en cuenta al global de la muestra (incluyendo a las personas diabéticas), valorando la asociación entre los modelos que permiten la estimación del riesgo cardiovascular en tal población (con exclusión del modelo SCORE), los resultados no difieren significativamente respecto a los expuestos en población no diabética, con la excepción de hallar que las diferencias que se encontraron en la asociación entre los modelos de FRAMINGHAM y DORICA fueron significativas (p = 0,045).

De igual manera, la asociación entre los modelos de Framingham, DORICA y REGICOR en la población exclusivamente diabética fue positiva e intensa entre todos los modelos, hallándose diferencias estadísticamente significativas al valorar la asociación según el sexo entre los modelos de Framingham y REGICOR.

Tabla 12. Asociación entre el riesgo cardiovascular estimado por los diferentes modelos en la población diabética.

<table>
<thead>
<tr>
<th>MODELOS CORRELACIONADOS</th>
<th>Coef. de correlación (Rho)</th>
<th>Significación estadística</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGICOR-DORICA</td>
<td>0,947</td>
<td>p < 0,001*</td>
</tr>
<tr>
<td>FRAMINGHAM-DORICA</td>
<td>0,856</td>
<td>p < 0,001*</td>
</tr>
<tr>
<td>FRAMINGHAM-REGICOR</td>
<td>0,832</td>
<td>p < 0,001*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hombres</th>
<th>Mujeres</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGICOR-DORICA</td>
<td>0,942</td>
<td>0,970</td>
</tr>
<tr>
<td>FRAMINGHAM-DORICA</td>
<td>0,915</td>
<td>0,880</td>
</tr>
<tr>
<td>FRAMINGHAM-REGICOR</td>
<td>0,982</td>
<td>0,852</td>
</tr>
</tbody>
</table>

* Valor estadísticamente significativo
7C.2.- CONCORDANCIAS ENTRE LOS MODELOS.

Siendo el objetivo primario de nuestro estudio, valoramos la concordancia en la clasificación del riesgo cardiovascular estimado por los diferentes modelos descritos. Para ello usamos el riesgo cardiovascular categorizado. Realizamos en análisis en tres niveles, población global y, posteriormente, según la condición presente o ausente de DM.

En la población global, la concordancia conjunta para el riesgo cardiovascular alto entre los cuatro modelos fue moderada (k = 0,463; p < 0,001).

Emparejando los modelos de estimación, la mayor concordancia en la discriminación del riesgo alto la encontramos entre Framingham y REGICOR, seguido de REGICOR y DORICA. En la tabla 13 se presentan los coeficientes kappa entre los diferentes modelos.

<table>
<thead>
<tr>
<th>CONCORDANCIA</th>
<th>Coef. Índice Kappa</th>
<th>Significación estadística</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGICOR-DORICA</td>
<td>0,589</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-DORICA</td>
<td>0,366</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-REGICOR</td>
<td>0,639</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-SCORE</td>
<td>0,531</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>SCORE-DORICA</td>
<td>0,262</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>SCORE-REGICOR</td>
<td>0,468</td>
<td>p < 0,001 *</td>
</tr>
</tbody>
</table>

* Valor estadísticamente significativo

Sin embargo, al analizar la población no diabética observamos como la concordancia conjunta empeoró hasta el rango medio (k = 0,398; p < 0,001). La mayor concordancia en la discriminación del riesgo alto la encontramos entre los modelos de FRAMINGHAM y REGICOR, seguido de FRAMINGHAM y SCORE y, por último, de REGICOR y SCORE, siendo esta concordancia moderada, según mostramos en la tabla 14.

<table>
<thead>
<tr>
<th>CONCORDANCIA</th>
<th>Coef. Índice Kappa</th>
<th>Significación estadística</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGICOR-DORICA</td>
<td>0,337</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-DORICA</td>
<td>0,218</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-REGICOR</td>
<td>0,585</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-SCORE</td>
<td>0,516</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>SCORE-DORICA</td>
<td>0,162</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>SCORE-REGICOR</td>
<td>0,462</td>
<td>p < 0,001 *</td>
</tr>
</tbody>
</table>

* Valor estadísticamente significativo

Para finalizar, la población diabética presentó una concordancia conjunta más baja aún, situándose en el grado medio aunque más cerca del grado insignificante (k = 0,224; p < 0,001). Excluyendo al modelo SCORE, la concordancia conjunta en la población diabética ascendió al grado de fuerte (k = 0,662; p < 0,001). La concordancia más alta la hallamos entre los modelos de DORICA y REGICOR (excelente), seguido de FRAMINGHAM y DORICA (moderada), según mostramos en la tabla 15.

Tabla 15. Concordancia en la estimación del riesgo cardiovascular en la población diabética.

<table>
<thead>
<tr>
<th>CONCORDANCIA</th>
<th>Coef. Índice Kappa</th>
<th>Significación estadística</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGICOR-DORICA</td>
<td>0,848</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-DORICA</td>
<td>0,511</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-REGICOR</td>
<td>0,182</td>
<td>p < 0,001 *</td>
</tr>
<tr>
<td>FRAMINGHAM-SCORE</td>
<td>0,000</td>
<td>p = 0,50</td>
</tr>
<tr>
<td>SCORE-DORICA</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>SCORE-REGICOR</td>
<td>0,000</td>
<td>p = 0,50</td>
</tr>
</tbody>
</table>

* Valor estadísticamente significativo

7C.3.-DISCORDANCIAS ENTRE LOS MODELOS.

Entre la población no diabética, los modelos que presentaron una mejor congruencia en la clasificación de las personas según el riesgo cardiovascular fueron REGICOR-DORICA (96,8% de concordancias en riesgo alto y no alto), seguido de FRAMINGHAM-REGICOR con un 95,3% y FRAMINGHAM-DORICA con el 92,9%. Al analizar las
discordancias entre los modelos, detalladas en las tablas de contingencia mostradas en la tabla 16, observamos los siguientes resultados:

- Framingham y REGICOR presentaron una concordancia en personas de alto riesgo del 43,6% (17 de 39 personas catalogadas de alto riesgo por uno, otro o ambos modelos). De las personas catalogadas de riesgo alto por Framingham, el 55,2% fueron catalogadas como de “riesgo no alto” por REGICOR. Por el contrario, de las 18 personas catalogadas de alto riesgo por REGICOR, tan solo una persona fue catalogada como de riesgo no alto por Framingham.

- Framingham y SCORE concordaron en el 39,1% de las personas con riesgo alto. El 51,6% de las personas catalogadas de riesgo alto por SCORE no lo fueron por Framingham, mientras que el 34,2% con riesgo alto por este último modelo no lo fueron por el modelo europeo.

- No observamos personas con alto riesgo por DORICA respecto a Framingham, sin embargo, de las personas con riesgo alto por Framingham, el 86,8% no fueron catalogadas como tal por DORICA. Algo similar ocurrió entre DORICA y SCORE.

- El 66,7% de las personas de alto riesgo por SCORE, no obtuvieron tal riesgo por REGICOR, mientras que solo una persona (el 5,6%) presentó la situación contraria. La concordancia en personas de alto riesgo fue del 32,7%.

- Finalmente, solo 15 de 464 personas (3,2%) presentaron discordancias entre los modelos de REGICOR y DORICA. De ellas, el 93% presentaron riesgo alto con REGICOR.
Tabla 16. Concordancias y discordancias en la población no diabética.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>RIESGO NO ALTO</th>
<th>RIESGO ALTO</th>
<th>TOTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td></td>
<td></td>
<td>426</td>
</tr>
<tr>
<td>RIESGO NO ALTO</td>
<td>400 (86,2%)</td>
<td>26 (51,0%)</td>
<td></td>
</tr>
<tr>
<td>RIESGO ALTO</td>
<td>13 (34,2%)</td>
<td>25 (39,1%)</td>
<td>38</td>
</tr>
<tr>
<td>TOTALES</td>
<td>413</td>
<td>51</td>
<td>464</td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td></td>
<td></td>
<td>426</td>
</tr>
<tr>
<td>RIESGO NO ALTO</td>
<td>425 (91,6%)</td>
<td>1 (5,6%)</td>
<td></td>
</tr>
<tr>
<td>RIESGO ALTO</td>
<td>21 (55,3%)</td>
<td>17 (43,6%)</td>
<td>38</td>
</tr>
<tr>
<td>TOTALES</td>
<td>446</td>
<td>18</td>
<td>464</td>
</tr>
<tr>
<td>WILSON</td>
<td></td>
<td></td>
<td>464</td>
</tr>
<tr>
<td>RIESGO NO ALTO</td>
<td>426 (91,8%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RIESGO ALTO</td>
<td>33 (86,8%)</td>
<td>5 (13,2%)</td>
<td>38</td>
</tr>
<tr>
<td>TOTALES</td>
<td>459</td>
<td>5</td>
<td>464</td>
</tr>
<tr>
<td>DORICA</td>
<td></td>
<td></td>
<td>464</td>
</tr>
<tr>
<td>RIESGO NO ALTO</td>
<td>413 (88,8%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RIESGO ALTO</td>
<td>46 (90,2%)</td>
<td>5 (10,9%)</td>
<td>51</td>
</tr>
<tr>
<td>TOTALES</td>
<td>446</td>
<td>18</td>
<td>464</td>
</tr>
<tr>
<td>SCORE</td>
<td></td>
<td></td>
<td>413</td>
</tr>
<tr>
<td>RIESGO NO ALTO</td>
<td>412 (88,8%)</td>
<td>1 (5,6%)</td>
<td></td>
</tr>
<tr>
<td>RIESGO ALTO</td>
<td>34 (66,7%)</td>
<td>17 (32,7%)</td>
<td>51</td>
</tr>
<tr>
<td>TOTALES</td>
<td>446</td>
<td>18</td>
<td>464</td>
</tr>
<tr>
<td>REGICOR</td>
<td></td>
<td></td>
<td>464</td>
</tr>
<tr>
<td>RIESGO NO ALTO</td>
<td>445 (95,9%)</td>
<td>14 (77,8%)</td>
<td></td>
</tr>
<tr>
<td>RIESGO ALTO</td>
<td>1 (20%)</td>
<td>4 (21,1%)</td>
<td>5</td>
</tr>
<tr>
<td>TOTALES</td>
<td>446</td>
<td>18</td>
<td>464</td>
</tr>
</tbody>
</table>

*Porcentaje respecto a totales de columna.
*Porcentaje respecto a totales de fila.
*Porcentaje respecto a total de la población.
*Porcentaje respecto al total de personas catalogadas de alto riesgo por uno u otro modelo.
Para finalizar, presentamos las discordancias halladas en la población diabética, según mostramos en la tabla 17, destacando los siguientes hallazgos:

- El 48,3% de los diabéticos fueron catalogados como de riesgo no alto por Framingham, REGICOR Y DORICA. Entre REGICOR y DORICA, catalogaron de riesgo no alto al 62,1% de los diabéticos.

- REGICOR y DORICA concedieron el riesgo alto a 1 persona en la que Framingham no consideró tal riesgo. Por el contrario, Framingham etiquetó de alto riesgo a 4 y 6 personas a la que REGICOR y DORICA, respectivamente, otorgaron el riesgo “no alto”.

- Entre REGICOR y DORICA concordaron en el 81,8% de las personas diabéticas con riesgo alto por uno u otro modelo. Tan solo 2 personas de las 29 diabéticas tuvieron discordancias en cuanto al riesgo alto entre los dos modelos.

Tabla 17. Concordancias y discordancias en la población diabética.

<table>
<thead>
<tr>
<th></th>
<th>REGICOR</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RIESGO NO ALTO</td>
<td>RIESGO ALTO</td>
<td>TOTALES</td>
<td></td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>14 (48,3%)</td>
<td>1 (9,1%)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>WILSON</td>
<td>4 (28,6%)</td>
<td>10 (66,7%)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>TOTALES</td>
<td>18</td>
<td>11</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>REGICOR</th>
<th>DORICA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RIESGO NO ALTO</td>
<td>RIESGO ALTO</td>
</tr>
<tr>
<td>FRAMINGHAM</td>
<td>14 (48,3%)</td>
<td>1 (11,1%)</td>
</tr>
<tr>
<td>WILSON</td>
<td>6 (42,9%)</td>
<td>8 (53,3%)</td>
</tr>
<tr>
<td>TOTALES</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

*Porcentaje respecto a totales de columna.
*Porcentaje respecto a totales de fila.
*Porcentaje respecto a total de la población.
*Porcentaje respecto al total de personas catalogadas de alto riesgo por uno u otro modelo.
Las enfermedades cardiovasculares continúan liderando las causas por muertes en la población española. Es por ello que continúa siendo un reto para cualquier médico la prevención de tales entidades para lograr mejorar la salud de la población. Disponemos de herramientas para estimar el riesgo de padecer manifestaciones relacionadas con la ateroesclerosis que subyace a las enfermedades cardiovasculares, no obstante, aún persisten controversias sobre cuál de ellas lo realiza de forma más eficaz en la población española. Como se ha demostrado en estudios anteriores, incluso pequeños errores en la estimación del riesgo, pueden conllevar cambios en la actitud terapéutica a adoptar sobre la población, derivándose consecuencias de gran magnitud tanto a nivel de la Salud Pública y esperanza de vida, como a nivel económico.

En nuestro estudio, de carácter transversal, seleccionamos una muestra de la población española. La muestra presentó una mediana de edad similar a la media de la mayoría de los estudios realizados previamente en la población española. Sin embargo, nuestro rango de edad fue más amplio (desde 18,5 a 98,5 años cumplidos corregidos). Los modelos de estimación no abarcan tales rangos de edad, por lo que el riesgo de las personas con edades extremas podría ser infraestimado. No obstante, las personas con edades inferiores a 30 años constituyeron el 14,6% (n= 72) de toda la muestra y las que presentaron edad superior a 74 años el 9,1% (n = 45), por lo que no nos parece que el resultado pueda estar interferido por ello.

Teniendo en cuenta lo anteriormente expuesto, la validez externa para la población general española puede verse comprometida dado que observamos algunas diferencias en las características basales de nuestra población respecto a las presentadas por otros investigadores en la materia y, en referencia a los factores de riesgo cardiovascular, respecto a la prevalencia en España según los datos de la Encuesta Europea de Salud en España del 2009, que se detallan a continuación:

1. **Factores de riesgo cardiovascular:**
 - La prevalencia de HTA conocida fue del 20,7% y del tratamiento antihipertensivo en población HTA conocida del 78,8%. Teniendo en cuenta que la prevalencia de HTA en España se situaba en torno al 35-40% y que el 65% de la población hipertensa conoce el diagnóstico(113), encontramos una
prevalencia de HTA conocida y del tratamiento antihipertensivo en ese mismo grupo de personas ligeramente menor (prevalencia de conocimiento de HTA estimada del 22,75% y del tratamiento antihipertensivo del 85% en hipertensos conocidos), aunque similar a la presentada en la población general, dado que los IC95% incluyen los valores poblacionales. Además, la prevalencia del control tensional en pacientes con HTA conocida se estima en el 21%, mientras que nosotros encontramos una prevalencia del control de la tensión arterial con tratamiento, del 32,7%.

- Menor prevalencia del hábito tabáquico. En nuestra población fue del 14,8% de fumadores, con mayoría perteneciente al sexo femenino (64,4% vs 35,6%), con prevalencias similares entre ambos sexos. En los estudios presentados por Ramos, Cañón-Barroso o Comín, por poner ejemplos, la prevalencia fue de al menos del 25% aproximadamente, siendo mayor en el sexo masculino (casi cuadriplica la prevalencia). La prevalencia del consumo de tabaco a diario en España se situaba en el 26,16%, sumándose un 3,71% que fumaba de forma esporádica, con mayor prevalencia en el sexo masculino (31,17% vs 21,33%).

- Mayor prevalencia de obesidad que la referenciada por la EES-2009, con una prevalencia en nuestra muestra del 22,6% global. Sin embargo, respecto a la mayoría de los estudios, la mediana del IMC no difiere significativamente de la descrita en los estudios, situándose entorno a los 27-28 kg/m2.

• Mayor prevalencia de dislipemia, obteniendo una prevalencia global del DLP conocida del 31,7%. Según algunos autores, la prevalencia de la dislipemia varía entre las distintas comunidades autónomas (114), situándose la prevalencia global española en el 24,3%, con mayor prevalencia en hombre (26,2% vs 22,9%). En nuestro estudio no observamos diferencias entre ambos sexos.

• Menor prevalencia de personas diabéticos, teniendo en cuenta la prevalencia de la enfermedad en la población española, situada en el 2008 en el 13,8% con una prevalencia de DM no conocida del 6% (115). En nuestra muestra observamos una prevalencia de DM conocida del 5,9%, ligeramente inferior a la estimada en la población española (7,8%). Únicamente detectamos a dos personas diabéticas no conocidas, aunque los criterios para detectarlo fueron incompletos, dado que no se pudo asegurar que se les realizaran a los individuos las determinaciones de la glucemia en ayunas. Por ello, es probable que se infraestime el número total de individuos diabéticos y, por tanto, el riesgo cardiovascular de la población. Según un artículo reciente (116), no ocurre lo mismo en cuanto a las determinaciones analíticas del perfil lipídico, dando por válidos las estimaciones del RCV según los niveles de colesterol obtenidos.

b) Enfermedades cardiovasculares:

• Cardiopatía isquémica: En la población inicialmente seleccionada, de la que posteriormente seleccionamos la muestra al analizar, hallamos una prevalencia de cardiopatía isquémica (SCASEST o SCACEST no fatal) del 11,2% (IC95%: 8,8% - 14,01) en personas con edad mayor a 30 años. La prevalencia de la cardiopatía isquémica en España permanece aún desconocida, si bien los estudios se han enfocados en estudiar su incidencia. El único estudio realizado al respecto cifra la prevalencia global de la angina (SCASEST) en el 7,7%, con diferencias en la distribución por comunidades autónomas (117). Dada la escasez de información al respecto, nos resulta difícil valorar si la prevalencia hallada condicionaría que los participantes tuvieran condicionantes genéticos o estilos de vida más saludables y, consecuentemente, menor riesgo a priori.
Enfermedad cerebrovascular: Disponemos de más estudios que evalúen la prevalencia de tal entidad en España. Algunos autores revelaron prevalencias de ACV del 2,1% y de AIT del 1,3% en población mayor de 20 años(118), lo que condicionaría una prevalencia global del 3,4%. Nuestros hallazgos van en consonancia con tales datos, si bien, una revisión sistemática más reciente cifró la prevalencia en un 7,5% en personas mayores de 65 años(119), presentando nuestros participantes una prevalencia ligeramente menor (5,2%). No obstante, la diferencia entre la prevalencia encontrada en la muestra y la revelada en la literatura no parecen significativas dado que el intervalo de confianza incluye al valor poblacional.

Enfermedad arterial periférica: algunos estudios señalan la prevalencia de EAP asintomática entorno al 30% en personas con coronariopatía o enfermedad cerebrovascular previa y de hasta el 54% en personas con ambas patologías en personas con edades entre 65 y 85 años de edad (120). No obstante, la prevalencia global de la EAP en la población española (con edades entre 55 y 84 años) se valoró en el estudio ESTIME y la situó en el 8% (121), significativamente menor que la reportada por investigadores estadounidenses quienes revelaron una prevalencia global del 12%-14%, con un aumento al 20% en población mayor de 75 años (122). En nuestro estudio encontramos una prevalencia del 17,6%, sin embargo, no utilizamos cuestionarios específicos (Edimburgo) ni se realizó el índice tobillo-brazo por razones logísticas y para favorecer la adherencia de los participantes.

Es interesante destacar que una de cada cinco personas de la muestra inicial había manifestado haber padecido alguna enfermedad cardiovascular y, dentro de ese grupo de personas, casi en la misma proporción las personas padecían combinaciones de las entidades que conforman el espectro ateroesclerótico, lo que confirma la afectación sistémica que representa tal entidad.

Respecto a la valoración del riesgo cardiovascular, nuestra muestra presentó un riesgo bajo estimado por la mayoría de los modelos, como era de esperar dado que la muestra se supone representativa de España, país considerado de bajo riesgo.
cardiovascular. La asociación entre los modelos de Framingham y REGICOR (adaptado), así como DORICA (calibrado) fue positiva e intensa tal y como indican sus coeficientes de correlación de Spearman. Similar ocurrió con SCORE, aunque con menor intensidad que con los anteriores modelos.

No obstante, no se debería confundir la correlación con la concordancia (123). La correlación indica asociación lineal entre ambas variables, mientras que la concordancia es la capacidad de dos herramientas para medir lo mismo. Hallamos una concordancia conjunta en la muestra global en grado moderado ($k = 0,463$) y en grado medio respecto al riesgo alto ($k = 0,398$) en población no diabética. En la población diabética, la concordancia entre los modelos con tablas para la estimación del riesgo cardiovascular en tal población (excluyendo a SCORE) fue buena ($k = 0,662$). Estos datos no son comparables con los resultados mostrados en los estudios previos, dado que siempre han referido las concordancia entre dos modelos y no una concordancia conjunta. Analizamos la concordancia de los cuatro modelos para los rangos de edad entre 30 y 74 años, tanto para la población diabética como para la no diabética, mejorando muy discretamente ($k = 0,717$ y $k = 0,419$, respectivamente). Realizando concordancia entre pares de modelos, hallamos la mejor concordancia, en grado fuerte, entre Framingham y REGICOR en población global (la mayoría no diabética). Para la población diabética fue entre REGICOR y DORICA, en grado excelente ($k = 0,848$).

Al analizar las discordancias entre los cuatro modelos observamos cómo, en la población no diabética, Framingham y SCORE presentan grandes discordancias. Observamos mayor número de personas catalogadas de alto riesgo por SCORE respecto a Framingham. Además este último modelo también sobreestimó el riesgo en el 34% de las personas catalogadas de alto riesgo por el modelo americano, catalogando SCORE a tales personas de riesgo no alto. Respecto a las relaciones existentes entre REGICOR y DORICA respecto a Framingham y SCORE destaca una sobreestimación por los modelos americano y europeo. En nuestra muestra observamos una infraestimación del riesgo cardiovascular por DORICA respecto a REGICOR en el 77,8% de las personas catalogadas de alto riesgo por este último. Consideramos que las discordancias en la población diabética no son valorables debido al número escaso en la muestra con tal condición.

Sin ser un objetivo de nuestro estudio, realizamos un análisis de la concordancia por pares de modelos y en los participantes con edades entre 30 y 74 años, con vista a
comparar nuestros resultados respecto a lo publicado anteriormente por otros autores. Las concordancias se muestran en la tabla 18. La concordancia mayor se encuentra entre Framingham y REGICOR en grado moderado.

Tabla 18. Concordancia en la estimación del riesgo cardiovascular en la población no diabética (por grupos de edades).

<table>
<thead>
<tr>
<th>CONCORDANCIA</th>
<th>Coef. 18-98 años</th>
<th>Índice Kappa 30-74 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGICOR-DORICA</td>
<td>0,337</td>
<td>0,387</td>
</tr>
<tr>
<td>FRAMINGHAM-DORICA</td>
<td>0,218</td>
<td>0,252</td>
</tr>
<tr>
<td>FRAMINGHAM-REGICOR</td>
<td>0,585</td>
<td>0,571</td>
</tr>
<tr>
<td>FRAMINGHAM-Score</td>
<td>0,516</td>
<td>0,537</td>
</tr>
<tr>
<td>Score-DORICA</td>
<td>0,162</td>
<td>0,202</td>
</tr>
<tr>
<td>Score-REGICOR</td>
<td>0,462</td>
<td>0,477</td>
</tr>
</tbody>
</table>

Nuestros resultados están de acorde a lo publicado, si bien los coeficientes entre Framingham, REGICOR y Score son ligeramente inferiores, aunque mostrando el mismo patrón de concordancia, siendo mejor entre Framingham y REGICOR respecto a Framingham y Score.

Limitaciones del estudio.

Nuestro estudio presenta varias limitaciones en cuanto a extracción de conclusiones y extrapolación de resultados. Por un lado, es posible que presente un sesgo de selección de la muestra, dado que el procedimiento de selección tuvo lugar durante una congregación de personas con motivo relacionado con la dieta y la salud que podría ocasionar que las personas que se acercaran a la convención estuvieran más preocupadas por su salud y presentaran mayor interés previo por promover la salud. Ello justificaría la menor prevalencia en tabaquismo e hipertensión respecto a la población general y en la menor prevalencia de obesidad respecto al resto de estudios llevamos a cabo en el ámbito sanitario.

Por otro lado, teniendo en cuenta que se deseaba recoger información representativa de la población española, habría sido interesante la recogida del la raza y/o nación de origen de cada individuo, así como el área geográfica de residencia al menos en el último año, dado que, de forma similar al reciente estudio americano sobre la irregular distribución de los factores de riesgo cardiovascular y causas por mortalidad en EE.UU., conocemos por los
investigadores del estudio IBERICA que ocurre algo de forma similar entre las diferentes áreas geográficas de nuestro país.

Probablemente nuestro estudio tenga poca potencia para el análisis de los resultados en la población diabética, ya que contamos con un tamaño muestral pequeño, como se ha comentado previamente.

Consideramos hacer mención al hecho de la limitación en la aplicabilidad que presentan las herramientas disponibles. Existen varios factores que pueden contribuir a una estimación imprecisa del riesgo cardiovascular en la población general:

1. La primera es relativa a la edad de las personas sobre las que se ha de realizar una intervención preventiva. Las herramientas de estudio, usan como límites de edad a personas comprendidas entre los 30 años y los 65-74 años. En este sentido, el modelo DORICA, amplía de forma considerable el rango de aplicación.

2. Sin embargo, desde un punto de vista estrictamente académico, la prevención que se realiza sobre la ateroesclerosis constituyen medidas de prevención secundaria, ya que un alto porcentaje de personas presentan enfermedad ateromatosa subclínica, sin categorización de riesgo alto por los modelos actuales. En este grupo de personas, algunos autores han demostrado que el índice tobillo-brazo asociado a los modelos de estimación del riesgo cardiovascular incrementa su eficacia (124), tanto es así, que recientemente han validado un modelo incluyendo tal herramienta a los modelos de Framingham y REGICOR (125-126).

3. Por último, el riesgo cardiovascular debe ser reevaluado periódicamente. A pesar de que cada vez es más frecuente la existencias de unidades de riesgo cardiovascular en nuestro sistema sanitario, debería concienciarse más a los médicos a reevaluar el RCV cuando la condición de los pacientes cambien y entren a formar parte de poblaciones específicas (infección VIH, hepatopatías, enfermedades reumatológicas o sistémicas, etc.) en las que, como se ha comentado previamente en este trabajo, el riesgo cardiovascular está incrementado debido a las propias entidades o los tratamientos que precisa el paciente. En este sentido, es
posible que algunas relaciones en la estimación del riesgo cardiovascular de nuestra población se encuentre artefactado dado que no se profundizó en la existencia de estas enfermedades en la encuesta a los participantes.
9.- CONCLUSIONES.

1. La prevalencia de los factores de riesgo en nuestra población sigue siendo extremadamente elevada: más de un 80 % de los individuos tienen, al menos, uno de los principales factores de riesgo.

2. Los antecedentes de enfermedad cardiovascular en nuestra población son, asimismo, muy frecuentes: una quinta parte de los individuos tienen algún tipo de antecedentes de alguna de las principales localizaciones.

3. Los datos anteriores justifican plenamente la necesidad de encontrar elementos predictores del nivel de riesgo de la población, a fin de adecuar las intervenciones a dicho nivel de riesgo, que habrá de ser estimado por una herramienta lo suficientemente adecuada a la población a la que se aplique.

4. En términos generales, la distribución de la población se mantiene, mayoritariamente, en niveles considerados como bajos, al margen del instrumento de estimación del riesgo empleado:
 a. Un 70 %, aproximadamente, si empleamos el modelo americano de Framingham
 b. Un 70 %, aproximadamente, si empleamos el modelo europeo de SCORE
 c. Un 70, 6 % si empleamos el modelo local español de REGICOR
 d. Un 48,3 % si empleamos el modelo nacional de DORICA

5. En consonancia con la conclusión anterior el modelo DORICA es el que en un mayor porcentaje estratifica a la población española como de riesgo moderado (48,9 %).

6. En los pacientes diabéticos, y al margen de que pudiéramos considerarlos de alto/muy alto riesgo por el sólo hecho de padecer una Diabetes Mellitus tipo 2, tal y como en numerosas guías se preconiza, el cálculo del riesgo por métodos estandarizados, permite detectar, también dicho incremento de riesgo:
 a. Según Framingham, el 48,3 % tendrían riesgo alto; y sólo el 20,7 % un riesgo bajo
 b. Según REGICOR, el 37,9 % tendrían riesgo alto, y sólo el 24,1 % riesgo bajo
c. Según DORICA, el 31,0 % tendrían riesgo alto, y sólo el 10,3 % riesgo bajo

7. El análisis de correlación entre los distintos instrumentos de cálculo permite señalar que la mejor correlación se muestra entre las tablas de riesgo de REGICOR y DORICA, sin duda por el hecho de que ambas proceden de población española específicamente.

8. Por el contrario la peor correlación se encuentra entre Framingham y SCORE, seguramente porque se están valorando morbi-mortalidades diferentes y además, son poblaciones de origen muy diferentes (Estados Unidos y Europa).

9. Las correlaciones encontradas entre los diferentes métodos estandarizados de cálculo de riesgo cardiovascular se mantienen independientemente del género masculino o femenino.

10. La concordancia entre las distintas tablas de riesgo es muy variable. La máxima concordancia se encontró al emplear la tabla de REGICOR y la de DORICA (seguramente por la misma razón antes señalada). También existe una buena concordancia entre el cálculo derivado de Framingham y ambas tablas españolas, debido a que ambas son adaptaciones españolas del primero. La peor concordancia la muestra las tablas de SCORE con las demás.

11. La concordancia es mayor en el grupo de individuos de alto riesgo, significando que este grupo es detectado de forma precisa por cualquiera de los métodos.

12. En tal sentido, ocurre igual en los pacientes diabéticos, cuyos resultados son concordantes hasta en un 80 % cuando se emplean tablas procedentes de la población nativa española.

13. De nuestros resultados analizados globalmente, cabe señalar las ventajas de emplear instrumentos para calcular el riesgo cardiovascular que procedan de la misma población a la que se le van a aplicar.

14. También hay que resaltar que la mayor utilidad es para detectar los pacientes de bajo o moderado riesgo, por cuanto los pacientes de alto riesgo suelen ofrecer resultados muy concordantes, y se pueden identificar fácilmente por la agrupación de factores de riesgo, como se suele recomendar en las Guías de Práctica Clínica.
10.-BIBLIOGRAFÍA

18. Mackenzie J. The Basis of Activity: Being a review of five years' work at St. Andrews Institute for Clinical Research: Faber & Gwyer; 1926.

122. Shammas NW. Epidemiology, classification, and modifiable risk factors of peripheral arterial disease. Vasc Health Risk Manag. 2007;3(2):229-34.
11.- LISTADO DE ANEXOS

Anexo 1. Tabla original de Anderson (1991). Framingham Heart Study. ...139
 Anexo 3A. Prevención primaria ...143
 Anexo 3B. Prevención secundaria ...145
Anexo 4. Tablas europeas de estimación de riesgo cardiovascular. SCORE.
 Anexo 4A. Tablas europeas precedidas a las SCORE. Personas sanas..................147
 Anexo 4B. Tablas europeas precedidas a las SCORE. Personas diabéticas149
 Anexo 4C. Países de bajo riesgo cardiovascular. Personas sanas151
 Anexo 4D. Tablas SCORE adaptadas específicamente a la población española153
Anexo 5. Tabla de estimación de riesgo cardiovascular del Registri Gironés del Cors (REGICOR).
 Anexo 5A. Personas sin Diabetes Mellitus ...155
 Anexo 5B. Pacientes con Diabetes Mellitus ...157
Anexo 6. Tabla de estimación de riesgo cardiovascular del (DORICA).
 Anexo 6A. Personas sin Diabetes Mellitus ...159
 Anexo 6B. Pacientes con Diabetes Mellitus ...161
Anexo 7. Tabla de las características generales de la población a estudio163
ANEXO 1. TABLA ORIGINAL DE ANDERSON (1991). FRAMINGHAM HEART STUDY.

<table>
<thead>
<tr>
<th>Mujer Edad</th>
<th>Puntos</th>
<th>Hombre Edad</th>
<th>Puntos</th>
<th>HDL-c (mg/dl)</th>
<th>Puntos</th>
<th>Col. Tot (mg/dl)</th>
<th>Puntos</th>
<th>PAS (mmHg)</th>
<th>Puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>-12</td>
<td>30</td>
<td>-2</td>
<td>25–26</td>
<td>7</td>
<td>139–151</td>
<td>-3</td>
<td>98–104</td>
<td>-2</td>
</tr>
<tr>
<td>31</td>
<td>-11</td>
<td>31</td>
<td>-1</td>
<td>27–29</td>
<td>6</td>
<td>152–166</td>
<td>-2</td>
<td>105–112</td>
<td>-1</td>
</tr>
<tr>
<td>32</td>
<td>-9</td>
<td>32–33</td>
<td>0</td>
<td>30–32</td>
<td>5</td>
<td>167–182</td>
<td>-1</td>
<td>113–120</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>-8</td>
<td>34</td>
<td>1</td>
<td>33–35</td>
<td>4</td>
<td>183–199</td>
<td>0</td>
<td>121–129</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>-6</td>
<td>35–36</td>
<td>2</td>
<td>36–38</td>
<td>3</td>
<td>200–219</td>
<td>1</td>
<td>130–139</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>-4</td>
<td>39</td>
<td>4</td>
<td>43–46</td>
<td>1</td>
<td>240–262</td>
<td>3</td>
<td>150–160</td>
<td>4</td>
</tr>
<tr>
<td>37</td>
<td>-3</td>
<td>40–41</td>
<td>5</td>
<td>47–50</td>
<td>0</td>
<td>263–288</td>
<td>4</td>
<td>161–172</td>
<td>5</td>
</tr>
<tr>
<td>39</td>
<td>-1</td>
<td>44–45</td>
<td>7</td>
<td>56–60</td>
<td>-2</td>
<td>316–330</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>46–47</td>
<td>8</td>
<td>61–66</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>48–49</td>
<td>9</td>
<td>67–73</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42–43</td>
<td>2</td>
<td>50–51</td>
<td>10</td>
<td>74–80</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>52–54</td>
<td>11</td>
<td>81–87</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45–46</td>
<td>4</td>
<td>55–56</td>
<td>12</td>
<td>88–96</td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47–48</td>
<td>5</td>
<td>57–59</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49–50</td>
<td>6</td>
<td>60–61</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51–52</td>
<td>7</td>
<td>62–64</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53–55</td>
<td>8</td>
<td>65–67</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56–60</td>
<td>9</td>
<td>68–70</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61–67</td>
<td>10</td>
<td>71–73</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68–74</td>
<td>11</td>
<td>74</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otros Factores</th>
<th>Puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabaquismo</td>
<td>4</td>
</tr>
<tr>
<td>Diabetes:</td>
<td></td>
</tr>
<tr>
<td>Hombres</td>
<td>3</td>
</tr>
<tr>
<td>Mujeres</td>
<td>6</td>
</tr>
<tr>
<td>Hipertrofia Ventricular izquierda</td>
<td>9</td>
</tr>
</tbody>
</table>

Puntuación final y riesgo cardiovascular a los 10 años.

PASO 1

<table>
<thead>
<tr>
<th>EDAD (años)</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 – 34</td>
<td>-1</td>
</tr>
<tr>
<td>35 – 39</td>
<td>0</td>
</tr>
<tr>
<td>40 – 44</td>
<td>1</td>
</tr>
<tr>
<td>45 – 49</td>
<td>2</td>
</tr>
<tr>
<td>50 – 54</td>
<td>3</td>
</tr>
<tr>
<td>55 – 59</td>
<td>4</td>
</tr>
<tr>
<td>60 – 64</td>
<td>5</td>
</tr>
<tr>
<td>65 – 69</td>
<td>6</td>
</tr>
<tr>
<td>70 – 74</td>
<td>7</td>
</tr>
</tbody>
</table>

PASO 2

<table>
<thead>
<tr>
<th>DIABETES</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>Sí</td>
<td>2</td>
</tr>
</tbody>
</table>

PASO 3

<table>
<thead>
<tr>
<th>HÁBITO TABAQUICO</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>Sí</td>
<td>2</td>
</tr>
</tbody>
</table>

PASO 4

<table>
<thead>
<tr>
<th>C-HDL (mg/dl)</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 35</td>
<td>2</td>
</tr>
<tr>
<td>35 – 44</td>
<td>1</td>
</tr>
<tr>
<td>45 – 49</td>
<td>0</td>
</tr>
<tr>
<td>≥ 60</td>
<td>-2</td>
</tr>
</tbody>
</table>

PASO 5

<table>
<thead>
<tr>
<th>COLESTEROL TOTAL (mg/dl)</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 160</td>
<td>-3</td>
</tr>
<tr>
<td>160 – 199</td>
<td>0</td>
</tr>
<tr>
<td>200 – 239</td>
<td>1</td>
</tr>
<tr>
<td>240 – 279</td>
<td>2</td>
</tr>
<tr>
<td>≥ 280</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C-LDL (mg/dl)</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>-3</td>
</tr>
<tr>
<td>100 – 129</td>
<td>0</td>
</tr>
<tr>
<td>130 – 159</td>
<td>0</td>
</tr>
<tr>
<td>160 – 190</td>
<td>1</td>
</tr>
<tr>
<td>≥ 190</td>
<td>2</td>
</tr>
</tbody>
</table>

PASO 6

<table>
<thead>
<tr>
<th>PRESIÓN ARTERIAL – HOMBRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistólica</td>
</tr>
<tr>
<td>< 120</td>
</tr>
<tr>
<td>120 – 129</td>
</tr>
<tr>
<td>130 – 139</td>
</tr>
<tr>
<td>140 – 159</td>
</tr>
<tr>
<td>≥ 160</td>
</tr>
<tr>
<td>Diastólica</td>
</tr>
<tr>
<td>< 80</td>
</tr>
<tr>
<td>80-84</td>
</tr>
<tr>
<td>85-89</td>
</tr>
<tr>
<td>90-99</td>
</tr>
<tr>
<td>>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESIÓN ARTERIAL – MUJERES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistólica</td>
</tr>
<tr>
<td>< 120</td>
</tr>
<tr>
<td>120 – 129</td>
</tr>
<tr>
<td>130 – 139</td>
</tr>
<tr>
<td>140 – 159</td>
</tr>
<tr>
<td>≥ 160</td>
</tr>
<tr>
<td>Diastólica</td>
</tr>
<tr>
<td>< 80</td>
</tr>
<tr>
<td>80-84</td>
</tr>
<tr>
<td>85-89</td>
</tr>
<tr>
<td>90-99</td>
</tr>
<tr>
<td>>100</td>
</tr>
</tbody>
</table>

Cuando la P.A. sistólica y diastólica aportan distinta puntuación se utiliza el mayor de los valores.
ANEXO 3A. NUEVAS TABLAS DE D’AGOSTINO (2000). FRAMINGHAM HEART STUDY.

(PREVENCIÓN PRIMARIA)

EDAD (años)
<table>
<thead>
<tr>
<th>PUNTUACIÓN</th>
<th>Hombre</th>
<th>Mujer no Menop.</th>
<th>Mujer Menop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 – 39</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>40-44</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>45-49</td>
<td>3</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>50-54</td>
<td>4</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>55-59</td>
<td>6</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>60-64</td>
<td>7</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>65-69</td>
<td>9</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>70 – 74</td>
<td>10</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

DIABETES
<table>
<thead>
<tr>
<th>PUNTUACIÓN</th>
<th>NO</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

TABACO
<table>
<thead>
<tr>
<th>HOMBRE</th>
<th>MUJER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>SI</td>
<td>4</td>
</tr>
</tbody>
</table>

LA ESTIMACIÓN CON ÁLCOHOL SOLO SE REALIZARÁ EN MUJERES
<table>
<thead>
<tr>
<th>ÁLCOHOL (onzas/sem)</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0</td>
</tr>
<tr>
<td>6-40</td>
<td>-1</td>
</tr>
</tbody>
</table>

PUNTUACIÓN DE LA PRESIÓN ARTERIAL

MUJERES
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PUNT.</td>
<td>0</td>
<td>19</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>PAS tratada (mmHg)</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

HOMBRES
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PUNT.</td>
<td>0</td>
<td>19</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>PAS tratada (mmHg)</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

PUNTUACIÓN DEL PERFIL LIPICO

MUJERES
<table>
<thead>
<tr>
<th>HDL (mg/dl)</th>
<th>< 45</th>
<th>45 – 54</th>
<th>55 – 64</th>
<th>65 – 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUNT.</td>
<td>0</td>
<td>19</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

HOMBRES
<table>
<thead>
<tr>
<th>HDL (mg/dl)</th>
<th>< 45</th>
<th>45 – 54</th>
<th>55 – 64</th>
<th>65 – 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUNT.</td>
<td>0</td>
<td>19</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

Probabilidad de evento coronario en 2 años en hombres de 35-74 años con enfermedad cardiovascular previa

SIN MENOPAUSIA

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Probabilidad (2 años)</th>
<th>Puntos</th>
<th>Probabilidad (2 años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>0 %</td>
<td>24-25</td>
<td>9%</td>
</tr>
<tr>
<td>10-15</td>
<td>1 %</td>
<td>26-27</td>
<td>12%</td>
</tr>
<tr>
<td>16-17</td>
<td>2 %</td>
<td>28-29</td>
<td>17%</td>
</tr>
<tr>
<td>18-19</td>
<td>3 %</td>
<td>30-31</td>
<td>24%</td>
</tr>
<tr>
<td>20-21</td>
<td>4 %</td>
<td>32-33</td>
<td>32%</td>
</tr>
</tbody>
</table>

CON

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Probabilidad (2 años)</th>
<th>Puntos</th>
<th>Probabilidad (2 años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>0 %</td>
<td>24-25</td>
<td>9%</td>
</tr>
<tr>
<td>10-15</td>
<td>1 %</td>
<td>26-27</td>
<td>12%</td>
</tr>
<tr>
<td>16-17</td>
<td>2 %</td>
<td>28-29</td>
<td>17%</td>
</tr>
<tr>
<td>18-19</td>
<td>3 %</td>
<td>30-31</td>
<td>24%</td>
</tr>
<tr>
<td>20-21</td>
<td>4 %</td>
<td>32-33</td>
<td>32%</td>
</tr>
<tr>
<td>22-25</td>
<td>0 %</td>
<td>26-27</td>
<td>2%</td>
</tr>
</tbody>
</table>

Probabilidad de evento coronario en 2 años en mujeres de 35-74 años sin enfermedad cardiovascular previa

SIN MENOPAUSIA

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Probabilidad (2 años)</th>
<th>Puntos</th>
<th>Probabilidad (2 años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>0 %</td>
<td>24-25</td>
<td>9%</td>
</tr>
<tr>
<td>10-15</td>
<td>1 %</td>
<td>26-27</td>
<td>12%</td>
</tr>
<tr>
<td>16-17</td>
<td>2 %</td>
<td>28-29</td>
<td>17%</td>
</tr>
<tr>
<td>18-19</td>
<td>3 %</td>
<td>30-31</td>
<td>24%</td>
</tr>
<tr>
<td>20-21</td>
<td>4 %</td>
<td>32-33</td>
<td>32%</td>
</tr>
</tbody>
</table>

CON

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Probabilidad (2 años)</th>
<th>Puntos</th>
<th>Probabilidad (2 años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>0 %</td>
<td>24-25</td>
<td>9%</td>
</tr>
<tr>
<td>10-15</td>
<td>1 %</td>
<td>26-27</td>
<td>12%</td>
</tr>
<tr>
<td>16-17</td>
<td>2 %</td>
<td>28-29</td>
<td>17%</td>
</tr>
<tr>
<td>18-19</td>
<td>3 %</td>
<td>30-31</td>
<td>24%</td>
</tr>
<tr>
<td>20-21</td>
<td>4 %</td>
<td>32-33</td>
<td>32%</td>
</tr>
</tbody>
</table>
PASO 1: PARA MUJERES Y HOMBRES

EDAD (años)

<table>
<thead>
<tr>
<th>35 - 39</th>
<th>40-44</th>
<th>45-49</th>
<th>50-54</th>
<th>55-59</th>
<th>60-64</th>
<th>65-69</th>
<th>70 - 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hombre</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Mujer</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

EDADE

<table>
<thead>
<tr>
<th>70 - 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

DIABETES

<table>
<thead>
<tr>
<th>NO</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>4</td>
</tr>
</tbody>
</table>

PASO 2: SOLO PARA MUJERES

TABACO

<table>
<thead>
<tr>
<th>NO</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Público</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SI</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Público</td>
</tr>
</tbody>
</table>

PUNTUACION DEL PERFIL LIPICO

MUJERES

<table>
<thead>
<tr>
<th>Col. total (mg/dl)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOMBRES

<table>
<thead>
<tr>
<th>Col. total (mg/dl)</th>
<th>25</th>
<th>30</th>
<th>45</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probabilidad de recidiva coronaria en los 2 años en hombres de 45-74 años con enfermedad coronaria o trombosis cerebral

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>3 %</td>
</tr>
<tr>
<td>2-5</td>
<td>4 %</td>
</tr>
<tr>
<td>6-9</td>
<td>5 %</td>
</tr>
<tr>
<td>10-11</td>
<td>7 %</td>
</tr>
<tr>
<td>12-13</td>
<td>8 %</td>
</tr>
</tbody>
</table>

Probabilidad de recidiva enfermedad coronaria a los 2 años en mujeres entre 35-74 años con enfermedad coronaria previa o trombosis cerebral

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>1 %</td>
</tr>
<tr>
<td>8-13</td>
<td>2 %</td>
</tr>
<tr>
<td>14-17</td>
<td>3 %</td>
</tr>
<tr>
<td>18-19</td>
<td>4 %</td>
</tr>
<tr>
<td>20-23</td>
<td>5 %</td>
</tr>
<tr>
<td>24-25</td>
<td>7 %</td>
</tr>
</tbody>
</table>
ANEXO 4A. TABLAS EUROPEAS QUE PRECEDIERON A SCORE. PERSONAS SANAS

<table>
<thead>
<tr>
<th>Nivel de riesgo</th>
<th>Bajo</th>
<th>Ligero</th>
<th>Moderado</th>
<th>Alto</th>
<th>Muy Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de riesgo</td>
<td>< 5%</td>
<td>5-9%</td>
<td>10-19%</td>
<td>20-39%</td>
<td>≥ 40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edad (años)</th>
<th>Colesterol (mmol/L)</th>
<th>Presión arterial sistólica (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 4B. TABLAS EUROPEAS QUE PRECEDIERON A SCORE. PACIENTES DIABÉTICOS.

<table>
<thead>
<tr>
<th>Presión arterial sistólica (mmHg)</th>
<th>Colesterol (mmol/L)</th>
<th>Nivel de riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 120</td>
<td>4-5</td>
<td>Bajo</td>
</tr>
<tr>
<td>120-140</td>
<td>6-7</td>
<td>Ligero</td>
</tr>
<tr>
<td>140-160</td>
<td>7-8</td>
<td>Moderado</td>
</tr>
<tr>
<td>160-180</td>
<td>8</td>
<td>Alto</td>
</tr>
<tr>
<td>≥ 180</td>
<td></td>
<td>Muy Alto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO FUMADOR</th>
<th>30 años</th>
<th>60 años</th>
<th>50 años</th>
<th>40 años</th>
<th>30 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>arterial</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>sistólica</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUMADOR</th>
<th>70 años</th>
<th>60 años</th>
<th>50 años</th>
<th>40 años</th>
<th>30 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>arterial</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>sistólica</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO FUMADORA</th>
<th>70 años</th>
<th>60 años</th>
<th>50 años</th>
<th>40 años</th>
<th>30 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>arterial</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>sistólica</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUMADORA</th>
<th>70 años</th>
<th>60 años</th>
<th>50 años</th>
<th>40 años</th>
<th>30 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>arterial</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>sistólica</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
<td>mmHg</td>
</tr>
</tbody>
</table>

Colesterol (mmol/L)

- **30 años**: 4-5, 6-7, 7-8, 8
- **40 años**: 4-5, 6-7, 7-8, 8
- **50 años**: 4-5, 6-7, 7-8, 8
- **60 años**: 4-5, 6-7, 7-8, 8
- **70 años**: 4-5, 6-7, 7-8, 8
Presión arterial sistólica (mmHg)

<table>
<thead>
<tr>
<th>Edad</th>
<th>No fumador</th>
<th>Fumador</th>
<th>No fumadora</th>
<th>Fumadora</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 años</td>
<td>180</td>
<td>15</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>60 años</td>
<td>160</td>
<td>10</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>55 años</td>
<td>140</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>50 años</td>
<td>120</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>40 años</td>
<td>100</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Colesterol (mmol/L)

<table>
<thead>
<tr>
<th>Edad</th>
<th>No fumador</th>
<th>Fumador</th>
<th>No fumadora</th>
<th>Fumadora</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 años</td>
<td>180</td>
<td>15</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>60 años</td>
<td>160</td>
<td>10</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>55 años</td>
<td>140</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>50 años</td>
<td>120</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>40 años</td>
<td>100</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Nivel de riesgo

- **Muy Bajo**: <1%
- **Bajo**: 1%
- **Ligero**: 2%
- **Moderado**: 3-4%
- **Alto**: 5-9%
- **Muy Alto**: 10-14%
- **Extrem. Alto**: >15%

ANEXO 4C. TABLAS EUROPEAS DE RIESGO CARDIOVASCULAR. SCORE. PAISES DE BAJO RIESGO. PERSONAS SANAS.
ANEXO 4D. TABLAS EUROPEAS DE ESTIMACIÓN DE RIESGO CARDIOVASCULAR ADAPTADAS A LA POBLACION ESPAÑOLA.

SUSANA SANS ET AL. PREVENCIÓN PRIMARIA. PERSONAS SANAS

Presión arterial sistólica (mmHg)

<table>
<thead>
<tr>
<th>Edad</th>
<th>NO FUMADOR</th>
<th>FUMADOR</th>
<th>NO FUMADORA</th>
<th>FUMADORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colesterol (mmol/L)

<table>
<thead>
<tr>
<th>Edad</th>
<th>NO FUMADOR</th>
<th>FUMADOR</th>
<th>NO FUMADORA</th>
<th>FUMADORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 años</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nivel de riesgo

- **Bajo riesgo**: < 5 %
- **Ligero riesgo**: 5 - 9 %
- **Moderado riesgo**: 10 - 19 %
- **Alto riesgo**: 20 - 39 %
- **Muy Alto riesgo**: ≥ 40 %
ANEXO 5A. TABLA DE ESTIMACIÓN DE RIESGO CARDIOVASCULAR DEL REGISTRI GIRONÉS DEL CORS. REGICOR.

(Personas sin diabetes mellitus)

Presión arterial sistólica/diastólica (mmHg)

<table>
<thead>
<tr>
<th>Promedio 65-74 años</th>
<th>Promedio 55-64 años</th>
<th>Promedio 45-54 años</th>
<th>Promedio 35-44 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>130-139/85-89</td>
<td>130-139/85-89</td>
<td>130-139/85-89</td>
<td>130-139/85-89</td>
</tr>
<tr>
<td>≥140/90</td>
<td>≥140/90</td>
<td>≥140/90</td>
<td>≥140/90</td>
</tr>
<tr>
<td><120/80</td>
<td><120/80</td>
<td><120/80</td>
<td><120/80</td>
</tr>
</tbody>
</table>

Colesterol (mmol/dL)

<table>
<thead>
<tr>
<th>Promedio 65-74 años</th>
<th>Promedio 55-64 años</th>
<th>Promedio 45-54 años</th>
<th>Promedio 35-44 años</th>
</tr>
</thead>
<tbody>
<tr>
<td><4.1</td>
<td><4.1</td>
<td><4.1</td>
<td><4.1</td>
</tr>
<tr>
<td>4.1-5.1</td>
<td>4.1-5.1</td>
<td>4.1-5.1</td>
<td>4.1-5.1</td>
</tr>
<tr>
<td>≥5.2</td>
<td>≥5.2</td>
<td>≥5.2</td>
<td>≥5.2</td>
</tr>
</tbody>
</table>

Nivel de riesgo

- Bajo: < 5 %
- Ligero: 5-9 %
- Moderado: 10-19 %
- Alto: 20-39 %
- Muy Alto: ≥ 40 %

Si el colesterol de HDL <35 mg/dL, el riesgo real = riesgo x 1.5
Si el colesterol de HDL >60 mg/dL, el riesgo real = riesgo x 0.5
ANEXO 5B. TABLA DE ESTIMACIÓN DE RIESGO CARDIOVASCULAR DEL REGISTRI GIRONÉS DEL CORS. REGICOR.

PACIENTES CON DIABETES MELLITUS

<table>
<thead>
<tr>
<th>Presión arterial sistólica/diastólica (mmHg)</th>
<th>NO FUMADOR</th>
<th>FUMADOR</th>
<th>NO FUMADA</th>
<th>FUMADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 120/80</td>
<td>≥ 129/80</td>
<td>< 160/100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-129/80-84</td>
<td>139/85</td>
<td>139/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-129/80-84</td>
<td>159/90</td>
<td>159/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 160/100</td>
<td>≥ 160/100</td>
<td>≥ 160/100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edad</th>
<th>Colesterol (mmol/dL)</th>
<th>Nivel de riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44 años</td>
<td>< 120/80</td>
<td>< 5 %</td>
</tr>
<tr>
<td></td>
<td>120-129/80-84</td>
<td>5.9 %</td>
</tr>
<tr>
<td></td>
<td>≥ 120/129</td>
<td>10.19 %</td>
</tr>
<tr>
<td></td>
<td>≥ 160/100</td>
<td>> 20.39 %</td>
</tr>
</tbody>
</table>

Si el colesterol de HDL <35 mg/dL, el riesgo real » riesgo x 1.5
Si el colesterol de HDL ≥60 mg/dL, el riesgo real » riesgo x 0.5
ANEXO 6A. TABLA DE ESTIMACION DEL RIESGO CARDIOVASCULAR DEL ESTUDIO DORICA.

(PERSONAS SIN DIABETES MELLITUS)

<table>
<thead>
<tr>
<th>Nivel de riesgo a 10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo</td>
</tr>
<tr>
<td>Ligero</td>
</tr>
<tr>
<td>Moderado</td>
</tr>
<tr>
<td>Alto</td>
</tr>
<tr>
<td>Muy Alto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nivel de riesgo a 10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 %</td>
</tr>
<tr>
<td>5-9 %</td>
</tr>
<tr>
<td>10-19 %</td>
</tr>
<tr>
<td>20-39 %</td>
</tr>
<tr>
<td>> 40 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO FUMADOR</th>
<th>FUMADOR</th>
<th>NO FUMADA</th>
<th>FUMADA</th>
</tr>
</thead>
<tbody>
<tr>
<td><4.1</td>
<td>4.7</td>
<td>5.7</td>
<td>6.7</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>140/100</td>
<td>140/100</td>
<td>140/100</td>
<td></td>
</tr>
<tr>
<td>140/100</td>
<td>140/100</td>
<td>140/100</td>
<td></td>
</tr>
<tr>
<td>140/100</td>
<td>140/100</td>
<td>140/100</td>
<td></td>
</tr>
<tr>
<td>≥ 7.2</td>
<td>≥ 7.2</td>
<td>≥ 7.2</td>
<td>≥ 7.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLESTEROL (mmol/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 120</td>
</tr>
<tr>
<td>120-140</td>
</tr>
<tr>
<td>> 140</td>
</tr>
</tbody>
</table>

Si el colesterol de HDL < 35 mg/dL, el riesgo real » riesgo x 1.5
Si el colesterol de HDL > 60 mg/dL, el riesgo real » riesgo x 0.5
ANEXO 6B. TABLA DE ESTIMACION DEL RIESGO CARDIOVASCULAR DEL ESTUDIO DORICA.

(PACIENTES CON DIABETES MELLITUS)

<table>
<thead>
<tr>
<th>Edad (años)</th>
<th>Colesterol de HDL (mmol/dL)</th>
<th>Riesgo</th>
<th>Colesterol de LDL (mmol/dL)</th>
<th>Riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-64</td>
<td><4.1</td>
<td>Bajo</td>
<td><4.1</td>
<td>Bajo</td>
</tr>
<tr>
<td>45-54</td>
<td>4.1-5.7</td>
<td>Ligero</td>
<td>4.1-5.7</td>
<td>Ligero</td>
</tr>
<tr>
<td>35-44</td>
<td>5.7-6.7</td>
<td>Moderado</td>
<td>5.7-6.7</td>
<td>Moderado</td>
</tr>
<tr>
<td>25-34</td>
<td>≥6.7</td>
<td>Alto</td>
<td>≥6.7</td>
<td>Alto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muy Alto</td>
<td></td>
<td>Muy Alto</td>
</tr>
</tbody>
</table>

Si el colesterol de HDL <35 mg/dL, el riesgo real = riesgo x 1.5
Si el colesterol de HDL ≥60 mg/dL, el riesgo real = riesgo x 0.5
ANEXO 7. TABLA DE LAS CARACTERISTICAS GENERALES DE LA POBLACION A ESTUDIO.

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th>Género femenino</th>
<th>Género masculino</th>
<th>Diferencias entre géneros (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Género femenino</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Género masculino</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diferencias entre géneros (p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a test medianas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b chi-cuadrado</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edad, mediana (IQR), años</td>
<td>54,5 (27)</td>
<td>54,5 (28)</td>
<td>54 (30)</td>
<td>0,838 a</td>
</tr>
<tr>
<td>Peso, mediana (IQR), kg</td>
<td>68,5 (19)</td>
<td>64 (13,75)</td>
<td>80 (16,5)</td>
<td>< 0,001 a</td>
</tr>
<tr>
<td>Talla, mediana (IQR), cm</td>
<td>162,5 (14)</td>
<td>156,5 (11)</td>
<td>170,5 (11)</td>
<td>< 0,001 a</td>
</tr>
<tr>
<td>IMC, mediana (IQR), kg/cm²</td>
<td>26,5 (6,1)</td>
<td>26 (6,3)</td>
<td>27,5 (5,5)</td>
<td>0,002 a</td>
</tr>
<tr>
<td>Tabaquismo (%, IC95%)</td>
<td>14,8% (11,9% - 18,2%)</td>
<td>14,6% (11,2% - 18,9%)</td>
<td>15,1% (10,5% - 21,2%)</td>
<td>0,888 b</td>
</tr>
<tr>
<td>Historia de DM (%, IC95%)</td>
<td>5,9% (4,1% - 8,3%)</td>
<td>5,9% (3,8% - 9,1%)</td>
<td>5,8% (3,2% - 10,4%)</td>
<td>0,962 b</td>
</tr>
<tr>
<td>Historia de HTA (%, IC95%)</td>
<td>20,7% (17,3% - 24,5%)</td>
<td>21,8% (17,6% - 26,6%)</td>
<td>18,6% (13,5% - 25,1%)</td>
<td>0,403 b</td>
</tr>
<tr>
<td>Historia de DLP (%, IC95%)</td>
<td>31,7% (27,8% - 35,9%)</td>
<td>33,6% (28,7% - 39,0%)</td>
<td>28,1% (21,9% - 35,2%)</td>
<td>0,206 b</td>
</tr>
<tr>
<td>Glucemia, mediana (IQR), mg/dl</td>
<td>103 (21)</td>
<td>102 (20)</td>
<td>105 (21)</td>
<td>0,117 a</td>
</tr>
<tr>
<td>PAS, mediana (IQR), mg/dl</td>
<td>134 (24)</td>
<td>132 (23)</td>
<td>138 (21)</td>
<td>0,004 a</td>
</tr>
<tr>
<td>PAD, mediana (IQR), mg/dl</td>
<td>80 (14)</td>
<td>79,5 (13)</td>
<td>80 (12)</td>
<td>0,996 a</td>
</tr>
<tr>
<td>Colesterol total, mediana (IQR), mg/dl</td>
<td>218 (56)</td>
<td>217 (53)</td>
<td>219,5 (62,5)</td>
<td>0,847 a</td>
</tr>
<tr>
<td>c-LDL, mediana (IQR), mg/dl</td>
<td>127 (50)</td>
<td>122 (50)</td>
<td>133 (49)</td>
<td>0,035 a</td>
</tr>
<tr>
<td>c-HDL, media (SD), mg/dl</td>
<td>59 (23)</td>
<td>64 (20)</td>
<td>48 (18,5)</td>
<td>< 0,001 a</td>
</tr>
<tr>
<td>Triglicéridos, mediana, mg/dl</td>
<td>148 (120,5)</td>
<td>138 (116)</td>
<td>166 (121)</td>
<td>0,011 a</td>
</tr>
</tbody>
</table>
12.- LISTADO DE TABLAS

Tabla 1. Variables categóricas del estudio... 63
Tabla 2. Variables cuantitativas del estudio. ... 64
Tabla 3. Coeficientes de las variables necesarias para el cálculo de “L_Chol” en el modelo de Framingham-Wilson. ... 66
Tabla 4. Distribución de los distintos grados del RCV en la muestra según el modelo Framingham. 106
Tabla 5. Distribución de los grados del RCV estimado por el modelo Framingham según la condición DM conocida... 107
Tabla 6. Distribución del RCV en la muestra según el modelo SCORE. 109
Tabla 7. Distribución de los distintos grados del RCV en la muestra según el modelo REGICOR. 110
Tabla 8. Distribución de los grados del RCV estimado por el modelo REGICOR según la condición DM conocida... 111
Tabla 9. Distribución de los distintos grados del RCV en la muestra según el modelo DORICA 112
Tabla 10. Asociación entre el riesgo cardiovascular estimado por los diferentes modelos 114
Tabla 11. Asociación entre el riesgo cardiovascular estimado por los diferentes modelos, según el sexo... 115
Tabla 12. Asociación entre el RCV estimado por los diferentes modelos en la población diabética. 115
Tabla 13. Concordancia en la estimación del RCV en la población global............................... 116
Tabla 14. Concordancia en la estimación del RCV en la población no diabética......................... 117
Tabla 15. Concordancia en la estimación del riesgo cardiovascular en la población diabética.......... 117
Tabla 16. Concordancias y discordancias en la población no diabética.................................... 119
Tabla 17. Concordancias y discordancias en la población diabética...................................... 120
Tabla 18. Concordancia en la estimación del riesgo cardiovascular en la población no diabética (por grupos de edades). ... 126
13.- LISTADO DE FIGURAS

Figura 1. Causas de defunciones en personas de todas las edades y ambos sexos en España entre 1980 y 2014. ... 20
Figura 2. Número de defunciones globales en región panamericana en 2010. ... 21
Figura 3. Tasas de mortalidad cardiovascular ajustadas por densidad de población en Europa en 2012. ... 22
Figura 4. Patrón de mortalidad por causa cardiovascular y neoplásica en EE.UU. ... 22
Figura 5. Patrón de mortalidad por causa diabética y accidental en EE.UU. ... 23
Figura 6. Artículos publicados por décadas. Framingham Heart Study. ... 28
Figura 7. Página web principal de la herramienta HeartScore®, versión europea. ... 38
Figura 8. Página web principal de la herramienta HeartScore®, versión española. ... 39
Figura 9. Participación del Sistema Inmune Innato en la fisiopatología del proceso ateroesclerótico. ... 56
Figura 10. Organigrama descriptivo del proceso de selección de la muestra para el análisis estadístico. ... 61
Figura 11. Distribución de la variable Sexo. ... 70
Figura 12. Estudio de la normalidad de la variable Edad en la muestra. ... 70
Figura 13. Distribución de la variable Edad de la muestra. ... 71
Figura 14. Distribución de la variable Edad de la muestra estratificada por la variable Sexo. ... 71
Figuras 15 y 16. Distribución de las variables Peso y Talla de la muestra. ... 71
Figura 17. Distribución de la variable Peso de la muestra. ... 72
Figura 18. Distribución de la variable Peso de la muestra estratificada por la variable Sexo. ... 72
Figura 19. Distribución de la variable Talla de la muestra. ... 72
Figura 20. Distribución de la variable Talla de la muestra estratificada por la variable Sexo. ... 72
Figura 21. Distribución de la variable IMC de la muestra. ... 72
Figura 22. Distribución del IMC “categórico” fragmentado por la variable Sexo. ... 73
Figura 23. Distribución de los factores de riesgo cardiovascular en la muestra. ... 74
Figura 24. Distribución de los factores de riesgo cardiovascular según la variable Sexo. ... 75
Figura 25. Distribución del hábito tabáquico en la muestra. ... 75
Figura 26. Distribución del tabaquismo en la población masculina y femenina. ... 75
Figura 27. Composición de la muestra fumadora. ... 76
Figura 28. Distribución de PAS y PAD en la muestra. ... 76
Figura 29. Distribución de la variable PAS de la muestra. ... 77
Figura 30. Distribución de PAS estratificada por la variable Sexo. ... 77
Figura 31. Distribución de la variable PAD de la muestra. ... 77
Figura 32. Distribución de PAD estratificada por la variable Sexo. ... 77
Figura 33. Distribución de HTA conocida en la muestra de estudio. ... 78
Figura 34. Distribución de HTA conocida según la variable Sexo. ... 78
Figura 35. Pacientes en tratamiento antihipertensivo. ... 78
Figura 36. Pacientes en tratamiento antihipertensivo. ... 78
Figura 37. Pacientes en tratamiento antihipertensivo. ... 78
Figura 38. Relación entre PAS y PAD en muestra global. .. 79
Figura 39. Relación entre PAS y PAD, en personas sin HTA .. 80
Figura 40. Relación entre PAS y PAD, en personas sin HTA conocida, según la variable Sexo. ... 80
Figuras 41 y 42. Relación entre PAS y PAD, en pacientes con HTA, tanto en la muestra global como según la variable Sexo. .. 81
Figura 43. Relación entre PAS y PAD, en pacientes en tratamiento antihipertensivo. 81
Figura 44. Relación entre PAS y PAD, en pacientes en tratamiento antihipertensivo, según el Sexo... 81
Figura 45. Distribución de DM conocida en la muestra global. .. 82
Figura 46. Distribución de DM conocida, según la variable Sexo. .. 82
Figura 47. Distribución de la normalidad de la variable Glucemia en la muestra. 82
Figura 48. Distribución de Glucemia en la muestra global. .. 83
Figura 49. Distribución de Glucemia en la muestra global, según la variable Sexo. 83
Figura 50. Distribución de Glucemia según la variable DM conocida. 83
Figura 51. Prevalencia de DLP conocida en la muestra de estudio. ... 84
Figura 52. Composición según la variable Sexo de las personas con DLP conocida. 84
Figura 53. Prevalencia de DLP según el Sexo. .. 84
Figura 54. Prevalencia de TtoDLP en la muestra de estudio. ... 85
Figura 55. Prevalencia de TtoDLP según la variable Sexo. .. 85
Figura 56. Distribución de la variable Colesterol total .. 85
Figura 57. Distribución de la variable Colesterol unido a HDL .. 85
Figura 58. Distribución de la variable Colesterol unido a LDL .. 85
Figura 59. Distribución de la variable Triglicéridos .. 85
Figura 60. Distribución de los niveles séricos de colesterol total en la muestra global y según la variable Sexo. .. 86
Figura 61. Distribución de los niveles séricos de colesterol unido a LDL en la muestra global y según la variable Sexo. .. 86
Figura 62. Prevalencia de c-LDL elevado en la población global. .. 87
Figura 63. Prevalencia de c-LDL elevado según TtoDLP. .. 87
Figura 64. Distribución de los niveles séricos de colesterol unido a HDL en la muestra global y según la variable Sexo. .. 87
Figura 65. Distribución de los niveles séricos de triglicéridos en la muestra global y según la variable Sexo. .. 88
Figura 66. Prevalencia de c-LDL elevado según DM conocida. .. 89
Figura 67. Distribución del perfil lipídico según la presencia o ausencia de la condición de DM conocida. .. 90
Figura 68. Distribución del perfil lipídico según el Tabaquismo .. 91
Figura 69. Distribución de la ECV de la muestra de estudio. ... 92
Figura 70. Distribución de la ECV de la muestra de estudio según la variable Sexo. 92
Figura 71. Distribución de las principales manifestaciones de ECV en la población con ECV ... 93
Figura 72. Distribución de las principales manifestaciones de ECV en la población con ECV según la variable Sexo .. 93
Figura 73. Distribución de las principales manifestaciones de ECV y sus combinaciones en la población inicial ... 94
Figura 74. Diferencias de Edad según la variable EAP previa... 95
Figura 75. Prevalencia de EAP previa según la variable Sexo... 95
Figura 76. Prevalencia de EAP previo según HTA conocida... 96
Figura 77. Prevalencia de HTA conocida según EAP previa... 96
Figura 78. Prevalencia del antecedente de EAP según la variable Fumador.. 96
Figura 79. Prevalencia de Tabaquismo según la variable EAP previa... 96
Figura 80. Prevalencia del antecedente de EAP según la variable DLP conocida.. 97
Figura 81. Prevalencia de DLP conocida según el antecedente de EAP.. 97
Figura 82. Prevalencia de EAP según DM conocida... 98
Figura 83. Prevalencia de DM conocida según EAP previa.. 98
Figura 84. Diferencias en la prevalencia de C. Isquémica según la variable Edad en la muestra inicial. 99
Figura 85. Diferencias en la prevalencia de C. Isquémica según la variable Sexo en la muestra inicial. 99
Figura 86. Diferencias en la prevalencia de C. Isquémica según la variable HTA conocida......................... 99
Figura 87. Prevalencia de HTA conocida según la variable C. Isquémica... 99
Figura 88. Prevalencia de C. Isquémica según la condición DM conocida... 100
Figura 89. Prevalencia de DM conocida según la presencia/ausencia de C. Isquémica................................. 100
Figura 90. Diferencias en la prevalencia de C. Isquémica según la variable DLP conocida...................... 101
Figura 91. Prevalencia de DLP según la variable C. Isquémica previa... 101
Figura 92. Diferencias en la prevalencia de C. Isquémica según el hábito tabáquico................................. 101
Figura 93. Prevalencia de Tabaquismo según el antecedente de C. Isquémica.. 101
Figura 94. Diferencias en la Edad media de los individuos según la variable ACV previa........................... 102
Figura 95. Prevalencia de ACV según la variable Sexo.. 102
Figura 96. Diferencias en la prevalencia de ACV según la variable HTA conocida..................................... 103
Figura 97. Diferencias en la prevalencia HTA conocida según la variable ACV previo.............................. 103
Figura 98. Prevalencia de ACV previo según DM conocida... 103
Figura 99. Prevalencia de DM conocida según ACV previo... 103
Figura 100. Diferencias en la prevalencia de DLP conocida según la variable ACV previa......................... 104
Figura 101. Diferencias en la prevalencia de ACV según la variable DLP conocida.................................. 104
Figura 102. Prevalencia de Tabaquismo según ACV previo... 104
Figura 103. Prevalencia de ACV según el hábito tabáquico... 104
Figura 104. Aplicabilidad de los distintos modelos de estimación del RCV en nuestra muestra.................... 105
Figura 105. Distribución del RCV según el modelo de Framingham en nuestra muestra........................ 106
Figura 106. Distribución del RCV estimado por Framingham según la variable Sexo............................... 107
Figura 107. Distribución del RCV según el modelo SCORE en nuestra muestra..................................... 108
Figura 108. Distribución del RCV estimado por SCORE según la variable Sexo....................................... 109
Figura 109. Distribución del RCV según el modelo REGICOR en nuestra muestra.................................... 110
Figura 110. Distribución del RCV estimado por REGICOR según la variable Sexo................................... 111
Figura 111. Distribución del RCV según el modelo de DORICA en nuestra muestra............................... 112
Figura 112. Distribución del RCV estimado por DORICA según la variable Sexo.................................... 113
Figura 113. Distribución del RCV estimado por DORICA según la variable DM conocida........................ 113
Figura 114. Rectas de regresión lineal entre los distintos modelos de estimación del riesgo cardiovascular.

Figura 116. Prevalencia de los distintos grados de Obesidad en la población española.