Complutense University Library

Alisamiento de cintas sobre curvas

González Andrés, Miguel (2005) Alisamiento de cintas sobre curvas. Tesis PhD.

Official URL: http://eprints.ucm.es/tesis/mat/ucm-t27342.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

En esta tesis se demuestra que las cintas, i.e. estructuras dobles asociadas a un fibrado de línea E sobre su soporte reducido, una curva proyectiva lisa e irreduciblede género arbitrario, son alisables si tienen género aritmético mayor o igual que 3 y la curva soporte admite un recubrimiento doble liso e irreducible con módulo de traza cero asociado E . El método usado se basa en las técnicas infinitesimales quese desarrollan para probar que si la curva soporte admite un tal recubrimiento doble entonces cada cinta sumergida sobre la curva es infinitesimalmente alisable, i.e. sepuede obtener como fibra central de la imagen de alguna deformación infinitesimalde primer orden del morfismo composición del recubrimiento doble y la inmersión delsoporte reducido en el espacio proyectivo ambiente que contiene a la cinta. Se obtienen también inmersiones en el mismo espacio proyectivo para todas las cintas asociadasa E . Entonces, suponiendo la existencia del recubrimiento doble, se demuestra en qué condiciones se puede extender el <<alisamiento infinitesimal>> a un alisamientoglobal sumergido. Como consecuencia se obtienen los resultados de alisamiento.

Item Type:Thesis (PhD)
Additional Information:Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Álgebra, leída el 21-06-2004
Directors:
DirectorsDirector email
Gallego, Francisco JavierUNSPECIFIED
Uncontrolled Keywords:Curvas algebraicas
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:5466
Deposited On:10 Mar 2006
Last Modified:30 Oct 2011 10:37

Repository Staff Only: item control page