Biblioteca de la Universidad Complutense de Madrid

Estudio y factorización de ideales completos en anillos locales

Impacto



Tostón Valdés, Eduardo (2006) Estudio y factorización de ideales completos en anillos locales. [Tesis Doctoral]

URL Oficial: http://eprints.ucm.es/tesis/mat/ucm-t26194.pdf



Resumen

En el capítulo II del libro IV de Enriques-Chisini (1915) se hace un estudio de los sistemas de curvas planas que pasan por un conjunto finito de puntos base con multiplicidades asignadas. Veinte años después, Zariski desarrolla una teoria aritmética paralela a la teoría geométrica de puntos infinitamente próximos en el caso de superficies lisas. El objeto de la Memoria es encontrar una clase amplia de ideales completos en Los que los resultados de Zariski se puedan generalizar a dimensión arbitraria. Una vez probada la utilidad de los ideales monomiales de la clase citada la pregunta natural es averiguar la complejidad algebraica de los mismos, es decir, entender sus sistemas minimales de generadores y sus módulos de sicigias. En la Memoria se calculan dichos sistemas minimales y a través de sus resolución libre minimal los módulos de sicigias y los números de Betti.


Tipo de documento:Tesis Doctoral
Información Adicional:

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Álgebra, leída el 30-10-2002

Palabras clave:Anillos locales
Materias:Ciencias > Matemáticas > Álgebra
Código ID:7356
Depositado:16 Ene 2008
Última Modificación:30 Oct 2011 10:37

Sólo personal del repositorio: página de control del artículo