Complutense University Library

Sistema inteligente para la detección y diagnóstico de patología mamaria

Vilarrasa Andrés, Amparo (2007) Sistema inteligente para la detección y diagnóstico de patología mamaria. [Thesis]

Official URL: http://eprints.ucm.es/tesis/med/ucm-t29394.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

El método más eficaz para reducir la mortalidad por carcinoma de mama actualmente, es la detección precoz de lesiones y su diagnóstico. Respecto a la detección, la dificultad está en relación con el pequeño tamaño de las lesiones, su bajo contraste, la superposición con tejidos normales, los artefactos en las mamografías, etc. El diagnóstico de las lesiones encontradas, depende en gran medida de la experiencia del radiólogo a la hora de interpretar las mamografías. Para reducir la tasa de fallos diagnósticos y biopsias innecesarias, puede utilizarse la doble lectura. Aunque este método consigue su objetivo, tiene inconvenientes (aumenta la carga de trabajo y los costes). Por ello, se propone el diseño de un sistema inteligente para la detección, pronóstico y diagnóstico de anomalías mamarias. Este sistema ha sido diseñado para la detección en forma paralela de masas y microcalcificaciones sospechosas, realizando posteriormente el diagnóstico de las lesiones encontradas. Para la detección de lesiones se emplean algoritmos basados en visión artificial y morfología matemática. Para el pronóstico (benigno o maligno) y el diagnóstico (patológico) se utilizan redes de neuronas artificiales. En el pronóstico, se utilizan redes de neuronas alimentadas hacia delante con un algoritmo de entrenamiento supervisado. En el diagnóstico se usan redes de Kohonen. El sistema diseñado se compone de tres módulos; un primer módulo, denominado subsistema de detección de masas, encargado de la segmentación y obtención de las características de las masas que pudieran presentarse en una mamografía digitalizada. El segundo módulo, denominado subsistema de detección de microcalcificaciones, encargado de la segmentación y obtención de las características discriminantes de las microcalcificaciones existentes en una mamografía digitalizada, y el tercer y último módulo encargado del diagnóstico de las lesiones encontradas por los subsistemas anteriores. Este sistema se denomina SADIMA (Sistema Autoadaptativo de Diagnóstico Mamográfico).


Item Type:Thesis
Additional Information:

Tesis de la Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Radiología y Medicina Física, leída el 28-03-2006

Directors:
DirectorsDirector email
Vega González, María Luisa
Manrique Gamo, Daniel
Uncontrolled Keywords:Mamas
Subjects:Medical sciences > Medicine > Gynecology and Obstetrics
Medical sciences > Medicine > Oncology
Medical sciences > Medicine > Diagnostic imaging and Nuclear medicine
ID Code:7455
Deposited On:16 Jan 2008
Last Modified:30 Oct 2011 10:37

Repository Staff Only: item control page