Biblioteca de la Universidad Complutense de Madrid

Linear and nonlinear intraday dynamics between the Eurostoxx-50 and its futures contract


Nieto, Luisa y Robles Fernández, María Dolores y Fernández, Angeles (2002) Linear and nonlinear intraday dynamics between the Eurostoxx-50 and its futures contract. [ Documentos de trabajo del Instituto Complutense de Análisis Económico (ICAE); nº 0208, 2002, ]

Vista previa

URL Oficial:


Nos planteamos analizar el comportamiento dinámico lineal y no lineal de los rendimientos intradía del índice bursátil Eurostoxx50 y de su contrato de futuro, los cuales debido a su relativa juventud, no han sido previamente analizados. Realizamos el estudio tanto desde la perspectiva individual como conjunta. Los resultados del contraste BDS indican que las variables no son iid y que la dinámica individual no lineal detectada no puede explicarse únicamente por la presencia de heteroscedasticidad condicional. Para el estudio de las relaciones dinámicas entre los precios de ambos mercados permitimos que el proceso de ajuste ante desequilibrios de la relación de cointegración a largo plazo sea no lineal. Constatamos que el Eurostoxx50 y su contrato de futuro están cointegrados y que el proceso de ajuste no es lineal. Finalmente, encontramos que los flujos de información entre mercados son bidireccionales tanto en el ámbito lineal como en el no lineal.

We set out to analyse the linear and nonlinear dynamic behaviour of intraday returns in the Eurostoxx 50 index and its futures contract which, given their relatively recent appearance, have not yet been analysed. We shall develop our study both from an individual and from a combined approach. The results of the BDS test indicate that the variables are not iid and that the detected nonlinear individual dynamics cannot solely be explained by the presence of conditional heteroskedasticity. For the study of the dynamic relationships between both markets’ prices, we allow the adjustment process to the imbalance of the long term cointegration relationship to be nonlinear. We find cointegration with a nonlinear adjustment process. Finally, we show that the information flow is bidirectional both in the linear as well as in the nonlinear sphere.

Tipo de documento:Documento de trabajo o Informe técnico
Palabras clave:Índice bursátil Eurostoxx50, Lineal, No lineal Nonlinearity, BDS, Nonlinear error correction mechanism, Nonlinear causality, Eurostoxx50, Index futures
Materias:Ciencias Sociales > Economía > Mercados bursátiles y financieros
Título de serie o colección:Documentos de trabajo del Instituto Complutense de Análisis Económico (ICAE)
Código ID:7659

Abhyankar, A. (1998): “Linear and nonlinear Granger causality: Evidence from the UK stock index futures market”, The Journal of Futures Market, 18: 519-540.

Abhyankar, A. (1992): , “A nonparametric test for independence of multivariate time series”, Statistica Sinica, 2: 137-156.

Abhyankar, A.; Copeland, L. S.; Wong, W. (1997): “Uncovering nonlinear structure in real-time stock market indexes: The S&P 500, the DAX, the Nikkei 225 and the FT-SE 100”, Journal of Business Economics and Statistics, 15: 1-14.

Baek, E.; Brook, W. (1992): “A general test for nonlinear Granger causality: Bivariate model”, Working Paper, Iowa State Unversity and University of Wisconsin, Madison Balke, N. S.; Fomby, T. B. (1997): “Threshold cointegration”, International Economic Review, 38: 627-645.

Berndt, E. K.; Hall, B. H.; Hall, R. E.; Haussman, J. A. (1974): “ Estimation and inference in nonlinear structure models”, Annals of Economic and Social Measurement, 4: 653-665.

Blasco, N.; Santamaria, R. (1996): “Testing memory patterns in the Spanis stock market”, Applied Financial Economics, 6: 401-411.

Bollerslev, T.; Wooldridge J. M. (1992): “Quasi-Maximum likelihood estimation and inference in dynamic models with time varying covariances”, Econometric Reviews, 11: 143-172.

Booth, G. G.; Martikainen, T.; Puttonen, V. (1993): “The international lead-lag effect between market returns: Comparison of stock index futures and cash markets”, Journal of International Financial Markets, Institutions and Money, 3: 59-71.

Brock, W. A.; Hsieh, D. A.; LeBaron, B. (1991): Nonlinear dynamics, chaos and instability, Cambridge, MA: The MIT press.

Brock, W., W. Dechert and J. Scheinkman, (1987) “A test for independence based on the correlation dimension”, Working Paper, University of Wisconsin at Madison, University of Houston, and University of Chicago.

Brock, W.; Dechert, D.; Sheinkman, J.; LeBaron, B. (1996): “A test for independence based on the correlation dimension” Econometric Reviews, 15: 197-235.

Dickey, D A; Fuller W A (1979): “Distribution of the estimators for autoregressive time series with a unit root”, Journal of the American Statistical Association, 74: 427-431.

Dwyer, G. P.; Locke, P.; Yu, W. (1996): “Index arbitrage and nonlinear dynamics between the S&P500 futures and cash”, Review of Financial Studies, 9: 353-387.

Enders, W.; Granger, C.W. (1998): “Unit root test and asymmetric adjustment with an exemple using the term structure of interest rates”, Journal of Business and Economic Statistics, 16: 304-311.

Enders, W.; Loudlow, J. (2000): “Non-linear decay: Tests for an attractor using a Fourier approximation”, Iowa State University, (Mimeo)

Enders. W.; Silkos, P. L. (2001): “Cointegration and threshold adjustment”, Journal of Business and Economic and Statistics, 19: 166-176.

Engle, R. F. (1982): “Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation”, Econometrica, 50: 987-1008.

Engle, R. F.; Granger, C. W. J. (1987): “Cointegration and error correction: Representation, estimation and testing”, Econometrica, 55: 251-276.

Engle, R. F.; Ng V. K. (1993): “Measuring and testing the impact of news on volatility”, Journal of Finance, 48: 1022-1082.

Fleming, J.; Ostdiek, B: ; Whaley, R. (1996): “Trading costs and the relative rates of price discovery in stock, futures and option markets”, The Journal of Futures Markets, 16: 353-387.

Fujihara, R.; Mougoue, M. (1997): “An examination of linear and nonlinear causal relationships betwenn price variability and volume in petroleum futures markets”, Journal of Futures Markets, 17: 385-416.

Gao, A. H.; Wang, G. H. K. (1999):“Modelling non linear dynamics of daily futures prices change”, The Journal of Futures Markets, 19: 325-351.

Glosten, L. R.; Jaganathan, R.; Runkle, D. (1993): “On the relation between the expected value and the volatility of the normal excess return on stocks”, Journal of Finance, 48: 1779-1801.

Granger , C. W. J. (1969): “Investigating causal relations by econometric models and cross-spectral methods”, Econometrica, 37: 424-438.

Granger , C. W. J. (1986): “Some recent developments in a concept of causality”, Journal of Econometrics, 39: 199-211.

Grunbichler, A.; Longstaff, F.; West, E. (1987): “Electronic screen trading and the transmission of information: An empirical examination”, Journal of Financial Intermediation, 3: 166-187.

Hiemstra, C.; Jones, J. D. (1994): “Testing for linear and nonlinear Granger causality in the stock price-volume relation”, The Journal of Finance, 49 (5): 1639-1664.

Hsieh, D. A. (1989): “Testing for nonlinear dependence in daily foreign exchange rate”, Journal of Business, 62: 339-368.

Hsieh, D. A. (1991), “Chaos and nonlinear dynamics: Application to financial markets” Journal of Finance, 46: 1839-1876.

Hsieh, D. A. (1993), “Implications of nonlinear dynamics of financial risk management”, Journal of Finance and Quantitative Analysis, 28: 41-64.

Lee, T.; White, H.; Granger, C. (1993): “Testing for neglected nonlinearity in time series models: A comparison of neural network method and alternative tests” Journal of Econometrics, 56: 269-290.

Ljung, G.; Box, G. (1979): “On a measure of lack of fit in time series models” Biometrika, 66: 265-270.

Ludlow, J.; Enders, W. (2000): “Estimating non-linear ARMA models using a Fourier coefficients”, International Journal of Forecasting, 16: 333-347.

MacKinnon, J. G. (1991): “Critical values for cointegration tests” en Long-run Economic Relationships: Readings in Cointegration, editado por R F Engle y C W J Granger, Oxford University Press.

McLeod, A I; Li, W K (1983).”Diagnostic checking ARMA time series models using squared-residual autocorrelations” Journal of Time Series Analysis, 4: 269-273.

Mossa, I. A.; Silvapulle, P. (2000): “The price-volume relationship in the crude oil futures market: Some results based on linear and nonlinear causality testing”, International Review of Economics and Finance, 9: 11-30.

Newey, W.; West, K. (1987): “Hypothesis testing with efficient method of moments estimation”, International Economic Review, 28: 777-787.

Newey, W.; West, K. (1994): “Automatic lag selection in covariance matrix estimation”, Review of Economic Studies, 61: 631-653.

Nieto, L.; Fernández, A; Muñoz, M.J. (1998): “Market efficiency in the Spanish derivatives markets: An empirical analysis”, International Advances in Economic Research, 4: 349-355.

Phillips, P. C. B.; Perron, P. (1988): “Testing for a unit root in time series regression”, Biometrika, 75: 335-346.

Pippenger, M. K.; Goering, G. E. (2000): “Additional results on the power of unit root and cointegration tests under threshold processes”, Applied Economic Letters¸7: 641-644.

Savit, R. (1988): “When random is not random: An introduction to chaos in market prices”, Journal of Futures Markets, 8: 271-290.

Wahab, M.; Lashigari, M. (1993): “Price discovery and error correction in stock index and stock index futures markets: A cointegration approach”, The Journal of Futures Markets, 13: 711-42.

Yang, S. R.; Brorsen, B. W. (1993):“Nonlinear dynamics of daily futures prices: conditional heteroskedasticity or chaos?”, The Journal of Futures Markets, 13: 175-191.

Yang, S. R.; Brorsen, B. W. (1994):“Daily futures price changes and nonlinear dynamics”, Structural Change and Economic Dynamics, 5: 111-132.

Depositado:03 Mar 2008
Última Modificación:06 Feb 2014 07:55

Sólo personal del repositorio: página de control del artículo