Biblioteca de la Universidad Complutense de Madrid

Diagnostic checking using subspace methods

Impacto



García Hiernaux, Alfredo (2009) Diagnostic checking using subspace methods. [ Documentos de trabajo del Instituto Complutense de Análisis Económico (ICAE); nº 0901, 2009, ] (No publicado)

[img]
Vista previa
PDF
305kB

URL Oficial: http://eprints.ucm.es/8589/




Resumen

The problem of diagnostic checking is tackled from the perspective of the subspace methods. Two statistics are presented and its asymptotic distributions are derived under the null. The procedures generalize the Box-Pierce statistic for single series and the Hoskings' statistic in the multivariate case. The performance of the proposals is illustrated via Monte Carlo simulations and an example with real data.


Tipo de documento:Documento de trabajo o Informe técnico
Palabras clave:Diagnostic checking, Portmanteau tests, Subspace methods
Materias:Ciencias Sociales > Economía > Finanzas
Título de serie o colección:Documentos de trabajo del Instituto Complutense de Análisis Económico (ICAE)
Volumen:2009
Número:0901
Código ID:8589
Referencias:

Bauer, D. (2005). Asymptotic properties of subspace estimators. Automatica, 41:359-376.

Box, G. E. P. and Pierce, D. A. (1970). Distribution of residuals autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65(332):1509-1526.

Casals, J., Sotoca, S., and Jerez, M. (1999). A fast and stable method to compute the likelihood of time invariant state space models. Economics Letters, 65(3):329-337.

Duchesne, P. and Roy, R. (2004). On consistent testing for serial correlation of unknown form in vector time series models. Journal of Multivariate Analysis, 89:148-180.

Escanciano, J. C. and Lobato, I. (2009). An automatic portmanteau test for serial correlation. Journal of Econometrics, forthcoming.

Francq, C., Roy, R., and Zako��an, J.-M. (2005). Diagnostic checking in ARMA models with uncorrelated errors. Journal of the American Statistical Association, 100(13):532-544.

Grubb, H. (1992). A multivariate time series analysis of some our price data. Applied Statistics, 41:95-107.

Horowitz, J. L., Lobato, I., Nankervis, J. C., and Savin, N. (2006). Bootstrapping the box-pierce q test: A robust test of uncorrelatedness. Journal of Econometrics, 33(2):841-862.

Hosking, J. R. M. (1980). The multivariate pormanteau statistic. Journal of the American Statistical Association, 75(371):602-608.

Jung, R. C. and Tremayne, A. R. (2003). Testing for serial dependence in time series models of counts. Journal of Time Series Analysis, 24(1):65-84.

Katayama, T. (2005). Subspace Methods for System Identi�cation. Springer Verlag, London.

Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of �t in time series models. Biometrika, 65:297-303.

Lobato, I. (2001). Testing that a dependent process is uncorrelated. Journal of the American Statistical Association, 96:1066-1076.

L�utkepohl, H. and Poskitt, D. S. (1996). Speci�cation of echelon form VARMA models. Journal of Business and Economic Statistics, 14(1):69-79.

Peña, D., Tiao, G. C., and Tsay, R. C. (2001). A Course in Time Series Analyses. Wiley Inter-science.

Tiao, G. C. and Tsay, R. S. (1989). Model speci�cation in multivariate time series. Journal of the Royal Statistical Society, B Series, 51(2):157-213.

White, H. (2001). Asymptotic Theory for Econometricians. Academic Press.

Depositado:03 Mar 2009 09:23
Última Modificación:06 Feb 2014 08:10

Sólo personal del repositorio: página de control del artículo