Global Geological Record of Lake Basins

VOLUME I

Edited by

E. GIERLOWSKI-KORDESCH & K. KELTS
Global Geological Record of Lake Basins
Volume 1

EDITED BY
E. GIERŁOWSKI-KORDEŞCH
Department of Geological Sciences
Ohio University

AND
K. KELTS
Limnological Research Center
University of Minnesota

CAMBRIDGE UNIVERSITY PRESS
Contents

List of contributors
Preface

Introduction

E. GIERLOWSKI-KORDEŚCH AND K. KELTS

Selected Topics

Key elements during the search for hydrocarbons in lake systems
C. P. SLADEN

East Greenland lacustrine complexes
G. DAM AND L. STEMMEK

Chemistry of closed basin lake waters: a comparison between
African Rift Valley and some central North American rivers and lakes
T. E. CERLING

Mesozoic-Cenozoic lacustrine sediments of the Zaire Interior
Basin
J.-F. COLIN

Ancient lacustrine basins in the southwestern French Massif
Central
R. SIMON-COINÇON

Lacustrine record in the continental Tertiary Duero Basin
(northern Spain)
J. ARMENTEROS AND A. CORROCHANO

Cenozoic lacustrine deposits in the Duero Basin (Spain)
R. MEDIAVILLA, A. MARTÍN-SERRANO, C. J. DABRIO AND J. I.
SANTISTEBAN

Precambrian

Late Proterozoic, northwest Scotland, UK
J. PARNELL

Cambrian and Devonian

A Cambrian alkaline playa from the Officer Basin, South
Australia
P. N. SOUTHGATE

Devonian Orcadian Basin, northern Scotland, UK
J. PARNELL, D. ROGERS, T. ASTIN AND J. MARSHALL

Carboniferous to Permian

Permian lakes in East Africa (Tanzania)
C. Z. KAAVA AND T. KREUSER

The Stephanian B Lake, Bohemian Basin, Czech Republic
V. SKOČEK

Lacustrine and palustrine carbonates in the Permian of eastern
Provence (France)
N. TOUTIN-MORIN

Anthracosia shale (Lower Permian), North Sudetic Basin,
Poland
K. MASTALERZ

The Permian lacustrine Basque Basin (western Pyrenees): an
eample for high environmental variability in small and shallow
carbonate lakes developed in closed systems
B. L. VALERO GARCÉS

Carbonate lacustrine episodes in the continental Permian
Aragon-Bearn Basin (western Pyrenees)
B. L. VALERO GARCÉS

Lake Bude (Upper Carboniferous), southwest England
R. HIGGS

Upper Allegheny Group (Middle Pennsylvanian) lacustrine
limestones of the Appalachian Basin, USA
S. D. WEDDAMAN

Carboniferous lacustrine deposits from the Paganzo Basin,
Argentina
L. A. BUATOIS, C. O. LIMARINO AND S. CÉSARI

Permo-Triassic to Jurassic

Late Triassic lacustrine deposits from the Middle European
Keuper Basin: a lower Middle Keuper sequence in northwest
Germany
V. HAUSCHKE

Semi-permanent lacustrine conditions in the Upper Triassic
Mersea Mudstone Group, South Wales, UK
A. B. LESLIE AND M. E. TUCKER

VIII
vii
3
19
29
31
37
47
53
63
83
89
91
97
101
107
121
127
135
143
147
Cenozoic lacustrine deposits in the Duero Basin (Spain)

R. MEDIAVILLA, A. MARTÍN-SERRANO, C.J. DABRIO, AND J.I. SANTISTEBAN

1 Instituto Tecnológico Geominero de España, Cristóbal Bordiu 35, E-28003 Madrid, Spain
2 Instituto Tecnológico Geominero de España, Rios Rosas 23, E-28003, Madrid, Spain
3 Dpto. Estratigrafía, Facultad de Ciencias Geológicas, Universidad Complutense, E-28040, Madrid, Spain

Introduction

The Duero Basin lies in the northwestern Iberian Peninsula with a surface extent of 55,000 km². It rests upon Pre-Mesozoic metasedimentary and granitic rocks of the Hesperic Massif (along the western, southern and northwestern borders) and Mesozoic sedimentary rocks (along the eastern and northeastern borders). Uplift of the proto-Central System during the Paleocene started the differentiation of the Duero Basin (Portero & Aznar, 1984). During the Eocene, a northwest-southeast compression increased the uplift and generated the Central System (Béjar, Gredos & Guadarrama Ranges, Fig. 1) that separated Duero Basin from the Tajo (Madrid) Basin. Most of the sedimentary fill of the Duero Basin consists of terrestrial deposits, however, a connection with the open sea existed to the north and northeast. During the Late Eocene and Oligocene, rapid uplift or the northern and northeastern margins of the Duero Basin and the complete establishment of the Central System (along the southern border) occurred. These major changes of paleogeography triggered rapid erosion of uplifted source areas and a large input of conglomerates to the basin. The largest rates of subsidence and accumulation of sediment are along the northern and eastern margins of the basin; the western and southern borders record much smaller volumes (Fig. 1A).

Paleogene sedimentary rocks crop out only along the margins of the Duero Basin (Fig. 1A), which are interpreted as alluvial-fan and proximal fluvial facies. Distal fluvial and lacustrine facies occur in the central parts of the basin as shown by drill cores (Compañía General de Sondeos, 1985). On the other hand, large outcrops of Neogene deposits in the basin represent various types of facies: alluvial-fan (northern and eastern borders), fluviatile (western border and toward basin center), and fluviolacustrine and lacustrine (central sector). The Neogene sedimentary record is limited in the south of the basin (Fig. 1A) because of large-scale erosion.

The Tertiary lacustrine deposits are arranged into two groups based on paleogeography: marginal lacustrine and central lacustrine systems. Marginal lacustrine systems include ephemeral marches or very shallow lakes and ponds related to alluvial-fan or low-sinuosity fluvial systems (Fig. 2A and B). Central lacustrine systems contain more stable, perennial lakes located in the basin center, preferentially aligned along the axis of maximum subsidence (Fig. 1A). These lakes developed at the distal part of fluvial systems, but in areas of high subsidence rates they may have been associated with alluvial fans as well.

Marginal lacustrine deposits

These deposits are lenticular units (0.2 to 10 m thick, several km long) exhibiting many features indicative of subaerial exposure, such as pedogenic textures, brecciation, and carbonate crusts (Fig. 2A and B). They interbed and are associated laterally with conglomerates, sandstones and mudstones, interpreted as alluvial sediments. Three facies associations based upon lithology are recognized: (1) Interbedded carbonate mudstones or marls (0.2 to 0.5 cm thick) and ripple cross-laminated sandstones (10 to 20 cm thick) (Fig. 2C, left) with Chelonia, crocodylia and fish remains (Jiménez, 1977), interpreted as floodplains of low-sinuosity river systems (Corrochano, 1977; Martin-Serrano, 1988) mostly along the western edge of the basin (Fig. 2A and B) and fed by granitic source areas. (2) Carbonate layers (marlstones or calcareous marlstones) passing upward into brecciated and cdaphized limestones (10 to 20 cm thick) (Fig. 2C, left) with Chelonia, crocodylia and fish remains (Jiménez, 1977), interpreted as floodplains of low-sinuosity river systems (Corrochano, 1977; Martin-Serrano, 1988) mostly along the western edge of the basin (Fig. 2A and B) and fed by granitic source areas. (3) Alternations of laminated carbonate-siliciclastic mudstones on a cm to dm scale, with abundant remains of palynomorphs or dolostones and gypsum (Fig. 2D), interpreted as lacustrine deposits (marshes/ponds), occupying a position distal to the fan systems (García Tucégón & Alonso Gávia, 1989) along the northern edge of the basin with source areas containing Mesozoic carbonate and gypsiferous rocks.

Central lacustrine deposits

Occurring in areas of maximum subsidence (Fig. 1A), five sedimentary cycles (N-1 to N-5) can be distinguished bounded by
Fig. 1. (A) The Duero Basin and isobath map of the base of the Tertiary (from Compañía General de Sondeos, 1985). Datum, present sea level. (B) Legend for Figs 1–6.
Fig. 2. (A) Location map of the marginal lacustrine deposits. (B) Temporal distribution of the marginal lacustrine deposits. (C) Conceptual models of carbonate ephemeral (modified from Dabrio et al., 1989) and siliciclastic (Martin-Serrano, 1988) lakes. (D) Conceptual model of saline (gypsiferous) ephemeral lakes (modified from Garcia Talegón and Alonso Gavílan, 1989).
Fig. 3. (A) Generalized stratigraphic section of the Neogene central lake deposits of the Duero Basin. (B) Neogene stratigraphic successions and recorded events in various areas of the Duero Basin. Key: (1) alluvial; (2) fluvio-lacustrine; (3) carbonate lacustrine; (4) saline lacustrine. (Exp.) expansion; (Ret.) regression. Flattening surface = unconformity.
unconformities or sedimentary discontinuities (Fig. 3A, B). Each cycle contains alluvial conglomerates, sandstones and mudstones that interfinger with lacustrine deposits. Lacustrine deposits of cycles N-1, N-3 and N-4 are carbonates and evaporites, whereas those of N-2 and N-5 are mostly of carbonates. These perennial lakes experienced continuous water level changes. Very low topographic gradients accounted for large shifts of the shorelines and large areas affected by alternating subaerial exposure and inundation.

A typical sedimentary sequence for carbonate lakes (Fig. 4.1) shows marlstones or biomicrites containing ostracods, charophytes, and some foraminifera that pass upwards into nodular limestones with gastropods and charophytes, topped by brecciated limestones. Paludal carbonates (Fig. 4.2) and deltaic siliciclastic green mudstones and sandstones (Sánchez Benavides et al., 1988) are associated with these carbonate lakes (Fig. 4.3).

A typical sequence for gypsiferous lakes (Fig. 5) contains alternating centimeter-thick layers of dolostones, or dolomitic marlstones, and lenses of gypsum ('microlenticular') passing upwards into layers of ripple cross-laminated gypsarenites, dolomicrites with gypsum lenses, topped by recrystallized, edaphized dolostones (Fig. 5A). Mediavilla (1986–87) observed layers of turbiditic gypsum in these deposits (Fig. 5B).

The areal distribution of these two types of lakes was controlled by tectonics, sediment input to the lacustrine areas and climate (see also Mediavilla et al., 1991). Tectonic events interrupted the progressive filling of the basin and expansion of the lakes (Figs. 3A & 6), generating the sedimentary cycles. Furthermore, changes in
the rate of external sediment input to the depositional system triggered shifts in lithology (Fig. 6). Climate may also have influenced depositional patterns and the transport and preservation of the gypsum. A closed hydrologic drainage is postulated for sedimentary cycles N-1 to N-4. Open drainage during cycle N-5 is evidenced by deposits of large alluvial systems.

Bibliography

Duero Basin (Cenozoic), Spain


