It is a great pleasure to welcome you to the 25th Regional Meeting of the International Association of Sedimentologists.

The Organizing Committee
Chairperson: Avraam Zelilidis
Secretary: Fotini Pomoni-Papaioannou
Scientific Programme Coordinators: George Papatheodorou & Maria Geraga
Field Trip Coordinators: Nikolaos Kontopoulos & Avraam Zelilidis
Social programme: George Ferentinos
Hotel Coordinator: Pavlos Avramidis
Web-site coordinator: Panagiotis Stephanopoulos
Secretarial Support: Angeliki Baka

Acknowledgments
The 25th Meeting of the International Association of Sedimentologists has been held at the Conference and Cultural Center in the University of Patras, in Patras. We are especially grateful for the assistance of the technical staff and the postgraduate students of the Department of Geology in providing technical support during the conference, running audio-visual equipment, registration, provision of poster boards, and all of the other jobs involved in hosting a conference.

We are grateful for generous financial support from the following organizations and companies:
GENERAL SECRETARIAT FOR RESEARCH & TECHNOLOGY (GGET)
HELLENIC PETROLEUM COMPANY
TITAN (CEMENT COMPANY)
DEPARTMENT OF EDUCATION & COMMUNICATIONS
MINISTRY OF NATIONAL EDUCATION AND RELIGIOUS AFFAIRS
INSTITUTE OF GEOLOGY AND MINERAL EXPLORATION (IGME)
UNIVERSITY OF PATRAS
REGION OF WEST GREECE
VAENI WINES
AMYNTEON WINES

We are also pleased to acknowledge the allocation of funds by the IAS to provide student travel grants to 26 conference participants.

The Organizing Committee wishes you a stimulating and enjoyable conference and an interesting short stay in Patras.

ON BEHALF OF THE ORGANIZING COMMITTEE
Sequence stratigraphic analysis of fluvial to tidal deposits using borehole images, well data and outcrop data: The Eocene Ishikari Group, Hokkaido, Japan
R. WIDYONINGRUM, T. TOKUNAGA, O. TAKANO and T. TSUIJI

Recognizing dolomitization processes in the Great Bahama Bank using unconventional trace element and facies analyses
K. WILLIS

Macro – and microscopic texture of *Epiphyton* bioherms in the Zhangxia Formation (Middle Cambrian), China
J. WOO and S.K. CHOUGH

Sequence stratigraphic framework and sequence patterns of Cretaceous post–rifting deposits in the Northern Songliao Basin
X. XIE, Z. FENG, Y. LU, Y. REN, J. REN and S. ZHANG

Facies and paleogeography of Oligocene to the middle Miocene in Tunisia
C. YAICH

Facies analysis and shallow benthic foraminifera paleoecology in a mixed carbonate-siliciclastic system. Early Eocene Minervois Region (SW France)
J. ZAMAGNI and M. MUTTI

Stratigraphic architecture and Quaternary evolution of the Agri intermontane basin (Southern Apennines, Italy)
I. ZEMBO

PART 3 – POSTER ABSTRACTS

Celestite replacement evaporite nodules in the Maastrichtian–Paleocene Carbonate Rocks at Qalit El Gendi, Wadi Sudr, West–Central Sinai, Egypt
A.M. ABU SHAMA

Cyclostratigraphic approach to chronostratigraphy in the lower Cretaceous of southern Italy
S. AMODTO, V. FERRERI and B. D’ARGENIO

Climatic signature of transgressive–regressive sequences from Quaternary alluvial deposits of the PO plain (Italy)
A. AMOROSI, M. PAVESI, M. RICCI LUCCHI, G. SARTTI and A. PICCII

Variability in planktonic foraminifera and coccolithophore assemblages as compared to TOC and aeolian input variations in sapropels S6–S14: Evidence from KC 19C core (Levantine basin, E. Mediterranean)
A. ANTONARAKOU, M.V. TRIANTAPHYLLOU and G. ANASTASAKIS

Quaternary travertines as paleoclimatic archives
E. ANZALONE, V. FERRERI and B. D’ARGENIO

3–Dimensional evolutionary model of the Ucayali Sur and Madre de Dios Basins, Perú
F. ANZULOVICH and S.M. REINANTE

Sandstone petrofacies and geochemical imprints in a multihistoried intracratonic Rift basin (Iherian Basin)
J. ARRIBAS, R. MAS, M.E. ARRIBAS, M. OCHOA and L. GONZÁLEZ

Redeposition patterns in Mississippian carbonate breccias (Moravo–Silesian Basin, Central Europe): From passive margin to Foreland Basin
O. BABEK, J. KALVODA and F. X. DEVUYST

Sedimentology and reservoir characterization of Middle Miocene rhodagal deposits, Moratalla, Spain
C. BAIRD, K. SOLTVEIT, M. TALBOT, T.A. JOHANSEN and G. SÆLEN
Sandstone petrofacies and geochemical imprints in a multihistoried intracratonic Rift basin (Iberian Basin)

J. ARRIHAB 1, R. MAS 2, M.E. ARRIHAB 1, M. OCHOA 1 and L. GONZÁLEZ 2

1 Dipartimento de Petrología y Geoquímica, Univ. Complutense of Madrid, Madrid, Spain
(E-mail: arribas@geo.ucm.es; mochoa@geo.ucm.es; earribas@geo.ucm.es)
2 Dipartimento de Estratigrafía, Univ. Complutense of Madrid, Madrid, Spain
(E-mail: ramonmas@geo.ucm.es; lgcebron@geo.ucm.es)

During the most active stages of rifting in the intracratonic Iberian Basin (Rift 1: Permian-Triassic; Rift 2: Late Jurassic-Early Albian) thick sequences of continental clastic deposits were generated. Sandstone records in both rift stages show similarities in composition and can be grouped in two elemental petrofacies: sedimentoclastics and plutoniclastic.

Sedimentoclastic petrofacies developed during early rifting stages through the recycling of prerift sediments. These petrofacies comprise a thin succession (<100 m) of mature quartzose and quartzolithic sandstones. These have been identified in the base of megasequences both in Rift cycle 1 (Saxonian facies, PT-1) and Rift cycle 2 (JC-1 and JC-3; Tithonian and Valangian, respectively). In the two rift stages, sedimentoclastic petrofacies evolve towards the top to plutoniclastic, reflecting periods of high tectonic activity accompanied by substantial erosion of plutonites. These feldspar–rich petrofacies form thick successions (1000–4000m) and correspond to the Buntsandstein (PT-2) in Rift cycle 1, and Haueriivian–Early Albian deposits (JC-4) in Rift cycle 2 in the North Iberian Basin (Camos Basin).

Geochemical data (i.e., CIA) concur with weathering inferences and with lithology at the sources. Sedimentoclastic plus plutoniclastic petrofacies form a “provenance cycle” that records a complete clastic cycle within a rifting period. Thus petrofacies PT-1 and PT-2 represent the “provenance cycle” during Rift-1. In the the North Iberian Basin (Camos Basin), two provenance cycles may be discerned during Rift cycle 2, related to the Tithonian–Berriasian and the Valanginian–Early Albian megasequences.

Tectonics is the main factor controlling petrofacies and geochemical imprints. Other factors (i.e., maturation during transport, local supply) may modulate the compositional signatures of the petrofacies yet their main character persists and even outlines the hierarchy of the main bounding surfaces between depositional sequences in the intracontinental Iberian Rift Basin.