INTERNATIONAL ASSOCIATION OF SEDIMENTOLOGISTS

IAS 2001
21st MEETING

INTERNATIONAL ASSOCIATION
OF SEDIMENTOLOGISTS

DAVOS
Switzerland

3 – 5 September 2001

ABSTRACTS & PROGRAMME

Edited by Ulrich G. Wortmann & Hanspeter Funk
T9: Poster Session

T9P31 Anastasiu Nicolae et al.: Sandstone provenance study of the East Carpathian Oligocene and Miocene sequences (Romania): mineralogical approach and source area reconstitution, p.118

T9P32 Arribas Jose et al.: The role of the structural arrangement of Hercynian units on the petrogenesis of siliciclastic deposits from the western Cameros Basin (Late Jurassic - Early Cretaceous Iberian Rift), North Spain, p.119

T9P33 Baaske Uwe P. & Krawinkel Hannelore E.: Provenance and Geochemistry of Upper Cretaceous Sediments from Southern Jordan, p.120

T9P34 Barbieri Chiara et al.: Facies analysis, Ar/Ar dating and mineral chemistry: tools for studying paleogeography in a subsiding collisional belt (Ligurian Alps, Italy), p.120

T9P35 Chaabani Fredj: Origin of dolomite in phosphatic Eocene of the Gafsa basin (South Atlas of Tunisia), p.121

T9P36 Deconinck Jean-Francois et al.: Clay mineralogical variability of Turonian bentonites of the Paris Basin, p.121

T9P38 Diener Rüdiger & Krawinkel Hannelore: Petrographic and geochemical parameters of sandstones of the Hochwipfel Formation (Carboniferous, western Karawanken Mountains), p.122

T9P39 Dinelli Enrico et al.: Shift in sediment provenance at the Pleistocene-Holocene transition in the Adriatic sea between Po and Adige Rivers, p.122

T9P310 Dogan Meral et al.: Provenance of Carboniferous clastics in South Hunan: results from zircon Pb/Pb evaporation dating, p.126

T9P321 Safronov Vasily T. et al.: Mineralogical provenance of the amphibolite-grade in the Early Proterozoic sandstones, NE Baltic Shield, p.127

T9P322 Szakmány György et al.: Geochemistry and provenance of Upper Carboniferous siliciclastic rocks in South Hungary: Remnants from the European Variscides, p.127

T9P323 Varga Andrea et al.: Comparison of different chemical indices of weathering: A case study on Late Palaeozoic sandstones from Hungary, p.127

T9P324 Zlobin Valery L. et al.: Mineralogical provenance studies of the granulate-grade Early Precambrian basins in the Anabar shield, Polar Siberia, p.128

S6: Applications of geochronologic methods in sedimentary systems

Aspen 2, Chair: Bernhard Fügenschuh

14:00 Neubauer Franz et al.: 40Ar/39Ar ages of detrital mica from a Carboniferous peripheral foreland basin, Austria: constraints for Variscan paleogeographic and tectonic models, p.183.

15:00 Ruiz Geoffrey M. et al.: Reconstructing polyphased exhumation histories using detrital zircon and apatite fission-track analysis: an example from the northern Ecuadorian Sub-Andean Zone., p.184.

S8: Cool-water carbonates: Sedimentology, diagenesis & oceanography

Sanada 2, Chair: Ulrich G. Wortmann & Maria Mutti

11:15 Collins Lindsay B.: Late Quaternary growth history of coral reefs of Australia's western margin, p.185.

11:35 Halfar Jochen et al.: Rhodolith dominated warm-temperate to subtropical carbonates of the southern Gulf of California, Mexico, p.186.

11:55 Samankassou Elias: Cool-water carbonates in a palaeoequatorial shallow-water environment: The paradox of the Auerig cyclic sediments (Late Carboniferous, Carnic Alps, Austria-Italy) and its implications, p.186.

Various geochemical processes are involved in sedimentary environments throughout weathering, leaching, and transportation. Oxidation states of elements in the first transition series (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). Ligand-field theory has been used extensively to clarify various aspects of the chemistry of transition elements in sedimentary processes. Factors controlling the concentration of dissolved transition elements in sedimentary environments were investigated. Results, presented here demonstrated that, in sediments, only the ligand-field stabilization energy coupled to the distribution of transition elements. Theoretical considerations suggested that, at steady-state conditions, concentrations transition elements are primarily dependent upon the ligand field stabilization energies (LFSE's) characteristics of the sedimentary processes. Therefore certain transition-metal ions may acquire higher crystal-field stabilization energies by entering compressed sites. The transition elements concentrations associated with the specified predominant terminal electron accepting reactions in bottom sediments of a variety of environments the predicted orders of uptake are: Ni > Cr > Cu > Co > Fe > Mn, Zn for M (II) ions and Cr > Mn > Co > V > Ti > Fe, Sc for M (III) ions. Using the octahedral and tetrahedral results together, another interesting data may be explained. The N^2+ ion, because of its high octahedral site-preference energy, occupies preferentially octahedral sites in the minerals and enters tetrahedral sites only when thermal energy is comparable with site-preference energy. The enrichment of nickel in nodules that formed in oxidizing environments may be related to oxidation of Ni (II) to Ni (IV), which enters into solid solution with Mn (IV), in δ MnO. The magnitude of the octahedral site-preference energy parameter gives of indication of the relative affinity of an ion in sedimentary environments for minerals. Co$^{2+}$ ions in seawater are oxidized to hydrate Co (III), oxide, which is enriched with hydrated Fe (III) oxide in manganese nodules that formed in oxidizing environments. The oxidation of Co$^{3+}$ to Co$^{4+}$ is accompanied by a large increase in LFSE for cobalt. The high Mn/Fe ratios in manganese nodules are related to reduction and diffusive migration of manganese in the upper liquid layer of sediments. Such mechanism is proved by dissolved manganese distribution in interstitial waters and occurrence of Mn$^{2+}$ in these sediments.

Sandstone provenance study of the East Carpathian Oligocene and Miocene sequences (Romania): mineralogical approach and source areas reconstitution

Nicolae Anastasiu, Marius Popa, Bogdan L. Varban

* e-mail:nanastasiu@fx.ro, Bucharest University, Faculty of Geology and Geophysics, Romania, Dep./Inst. of Mineralogy
* e-mail:popam@geo.edu.ro, Bucharest University, Faculty of Geology and Geophysics, Romania, Dep./Inst. of Mineralogy
* e-mail:varban@uiian.uwo.ca, Univ./Dep. of Earth Sciences, Canada, Dep. Inst. of Earth Sciences

Keywords: Sandstone, Provenance, Carpathians. The East Carpathian belt (Romania) comprises several geotectonic units, composed of flysch- and molasse-type sequences. Oligocene and Miocene sandstones argue important changes of the quality of source areas involved, and of associated environments.

On the basis of mineralogical features (i.e. grain types, associations, microstructures, inclusions) and textural data (roundness, sorting of compositional populations) - the following considerations could be taken into account:

1. At Oligocene level petrotypes are mainly represented by quartz-arenites, subordinately by lithic sandstones. The rock fragments are of metamorphic (metagraywackes, fillites, micaceous) or sedimentary (shales, sandstones) origin. The heavy minerals associations are mainly composed of zircon, rutile, staurolite, almandine, pirop. Sorting is moderate-good, with roundness ranging from 0.2 to 0.8.

2. At Miocene level the petrotypes are mainly lithic. The rock fragments are very different, being represented by pluto- nite (granites, diorites), volcanic (andesites, glasses), metamorphic (quartzites, fillites, micaceous, gneisses, amphibolites) and sedimentary (limestones, quartz-arenites, lithic sandstones/greywackes, shales) types. Heavy minerals are represented by: zircon, staurolite, garnets, hornblende, epidote. These petrotypes are poorly sorted, clasts being variably rounded (from 0.1-0.8).

Areal and temporal distribution of clastic petrosilicic shows a sensitive change of the petrographic framework of source areas. During Oligocene the active sources have been identified as being extrabasinal cratonic blocks and recycled orogeny terrains (s. Dickinson-Suczec, 1979). Clastics derived from the main, primary, sources represented by Est-European Platform have intermitently been contaminated with green clasts-type detritus, of Central-Dobrogean origin, and supplied a complex turbidite system developed on a lowstand regime. Quartz-rich petrographic types are interpreted as related to relative enrichment by selective alteration of primary associations.

During Miocene the quality of source areas changed from magmatic arcs (Burdigalian) to recycled orogeny areas (Badenian), and further suggests an evolution from pluto- and crystalline rocks (associated to continental crusts) to sedimentary complexes related to collisional and postcollisional orogenic belts. Strong compositional and textural variations laterally and vertically argue an active geotectonic regime (as suggested either by diagnostic physical structures), that also controlled differential subsidence/ uplift movements and, consequently, secondary (intrabasinal) sources. The receiving systems were represented by fan deltas and shallow-water settings.

The role of the structural arrangement of Hercynian units on the petrogenesis of siliciclastic deposits from the western Cameros Basin (Late Jurassic - Early Cretaceous Iberian Rift), North Spain

Jose Arribas, Angela Alonso, Ramón Mas, Amparo Tortosa

* e-mail:arribas@eucmssium.ucm.es, Dpt. de Petrología y Geoquímica, Facultad de Ciencias Geológicas, Spain, Dep./Inst. of Universidad Complutense de Madrid, 28040-Madrid
* e-mail:angelamais@decanex.ucm.es, Dpt. de Estratigrafía Facultad de C. Geológicas, Spain, Dep./Inst. of Universidad Complutense de Madrid, 28040-Madrid
* e-mail:ramonmais@eucmssium.ucm.es, Dpt. de Petrología y Geoquímica, Facultad de C. Geológicas, Spain, Dep./Inst. of Universidad Complutense de Madrid, 28040-Madrid
* e-mail:arribas@eucmssium.ucm.es, Dpt. de Petrología y Geoquímica, Facultad de C. Geológicas, Spain, Dep./Inst. of Universidad Complutense de Madrid, 28040-Madrid

Keywords: Sandstone composition, Rift, Cameros basin, Spain. The Cameros Basin in Central Spain is an intraplate rift basin that was filled up by a thick pile of clastic sediments (about 9.000 m of stratigraphic record) from Tithonian to Early Albian. The sedimentary record mainly consists of continental deposits arranged in seven depositional sequences, each of one constituted by a basal fluvial unit that evolves upwards into lacustrine carbonate levels. The younger depositional sequences show well developed coarse grained fluvial units, lacking the upper lacustrine carbonate unit. The basin of the basin is represented by the Hesperian Massif (Variscan Belt)
that is covered by marine Jurassic and Triassic (German facies) deposits. From Late Jurassic to Early Albian, as the basin evolved, important paleogeographic changes took place, affecting feeder source terrains. Two main megasequences, formed from different bedrock complexes, can be distinguished. The first megasequence (Tithonian - Berriasian) was generated during the initial rifting phase, along NW-SE transects trending, being the Western Asturian Leones zone of the Hesperian Massif (low- to medium-grade metamorphic rocks) and the Mesozoic cover, the main sources. Three depositional sequences are identified: a basal sequence that is characterized by quartzolitic petrofacies \((Qm_{86} F_{13} L_{72})\) generated by the erosion of the Mesozoic sedimentary cover, and two other sequences with quartzofeldspathic deposits \((Qm_{86} F_{13} L_{72} P_{0.75} \text{to} Qm_{86} F_{13} L_{72} P_{0.79})\) with a dominant metamorphic provenance. The second megasequence (Valanginian - Early Albian) was formed during the most subsiding phase of the basin and is related with the propagation to the SW of bounded through fractures. These fractures affected the Central Iberian zone of the Hesperian Massif (crystalline rocks) and the overlying Mesozoic sedimentary cover (mainly Triassic arkoses). As a consequence, four depositional sequences were generated. The first one is constituted by quartzarenites \((Qm_{86} F_{13} L_{72})\) from the recycling of the arkosic cover. The other three depositional sequences show quartzofeldspathic petrofacies \((Qm_{86} F_{13} L_{72} P_{0.24} \text{to} Qm_{86} F_{13} L_{72} P_{0.79})\) originated from the erosion of crystalline Hesperian sources. In addition, a detailed analysis of sandstone composition during sedimentation of depositional sequences provides consistent information about the hierarchy of these sequences and its relation with the tectonic evolution of the basin.

Provenance and Geochemistry of Upper Cretaceous Sediments from Southern Jordan

Uwe P. Baaske\(^a\) Hannelore E. Krawinkel\(^b\)

\(^a\) e-mail: uwe.baaske@geologie.uni-stuttgart.de, University of Stuttgart, Germany, Dep/Inst. of Geology and Palaeontology
\(^b\) e-mail: hannelore.krawinkel@geologie.uni-stuttgart.de, University of Stuttgart, Germany, Dep/Inst. of Geology and Palaeontology

Keywords: Provenance, Geochemistry, Statistics

The Upper Cretaceous sediments of southern Jordan accumulated along the southern Tethyan continental margin. Repeated sea level fluctuations are recorded in an approximately 150 to 250 m thick sedimentary succession consisting of a mixture of non-marine, marginal marine, and open marine mixed carbonatesiliciclastic deposits. These deposits can be easily studied along an escarpment in south Jordan. Samples from different stratigraphic levels along the escarpment were used for provenance studies. Heavy mineral analysis and thin section analysis were combined with bulk rock geochemistry.

The mature, quartz rich composition of the highly friable Cretaceous sediments yield clear results. Recycled sediments and passive margin provenance areas are the main source. The most responsible source area representing this provenance is the African-Arabian plate to the S and SW of the Cretaceous Jordan. The source material was most probably provided by Palaeozoic quartz rich sediments and basement rocks. Such source materials are exposed further south in Jordan in the Wadi Rum area.

Due to the high maturity, the Cretaceous sediments of southern Jordan represent an ideal material to analyse the effect of heavy mineral and accessory mineral content on the bulk rock geochemistry. Without lithoclasts and almost no authigenic minerals other than quartz, the bulk analysis represent the pure clastic composition. Several statistical methods, including cluster analysis and multivariate methods are used to evaluate mineral features in large data sets. In our study slight changes in the geochemistry are attributed to the heavy mineral content. They might also support the provenance analysis.

In addition to provenance studies the geochemical data were used with SEDNORM to recalculate the data to modal mineral composition. The calculated composition was compared with the results from petrographic studies. The results show that bulk rock analysis of friable quartz arenites might be used to classify the rocks instead of laboriously petrographic analysis on that material. It also supports the use of bulk rock geochemistry as a provenance tool.

Facies analysis, Ar/Ar dating and mineral chemistry: tools for studying paleogeography in a subsiding collisional belt (Ligurian Alps, Italy).

Chiara Barbieri\(^a\) Barbara Carrapa\(^a\) Andrea Di Giulio\(^a\) Jan Wijbrans\(^b\)

\(^a\) e-mail: chiara.barbieri@manhattan.unipv.it, University of Pavia, Italy, Dep/Inst. of Department of Earth Sciences
\(^b\) e-mail: cab@geo.vu.nl, Vrije Universiteit van Amsterdam, The Netherlands, Dep/Inst. of Faculteit der Aardwetenschappen

Integrated facies analysis, Ar/Ar dating on white micas and electron microprobe analyses on phengites, amphiboles and garnet from the Molare Formation are used to study the paleogeography of the Ligurian Alps which constitute the substratum of the primary basin infill. Facies analysis was carried out in order to recognize environmental changes, which potentially affect sedimentary transport patterns (transversal vs. long-shore).

Mineral chemistry and Ar/Ar dating on white micas allow the division of the study area into two sectors, which directly mirror the substratum of the clastic sequence (Voltri Massif in the NE and Brianconnaisse units in the SW). The NE sector is characterised by a main age family around 50 Ma and phengite celadonite contents of Si < 3.2 a.p.f.u. suggesting a provenance from the Bagnaschino (blueschists fades) or a ranging metamorphism, whilst calcic and alkali-calcic amphiboles are the only amphibole occurring in SW samples, suggesting provenance from the Brianconnaisse basement; both age groups and phengite compositions resulted only in samples covering Brianconnaisse Voltri Massif boundary area. Amphiboles allow further provenance distinctions within each sector, as they reflect the heterogeneous metamorphic overprint of the Voltri Group. In particular, Alkali-amphiboles occur mainly in the northern sector, where basement was faintly affected by retrograde metamorphism, whilst calcic and alkali-calcic amphiboles occur in the south, where retrogression was stronger. Glan­cophane is the only amphibole occurring in SW samples, suggesting provenance from the Bagnaschino (blueschists facies) or Pamparato-Murialdo and Calizzano-Savona units (glaucophane bearing greenschists facies). Garnets mainly occur in samples from the NE suggesting provenance from the Voltri Group. This signal however is not distinct enough to recognise specific source rocks within the massif.

As a whole, facies analysis, mineral chemistry and geochronology clearly reflect local provenance of the Molare Formation, without significant long-shore drift or mixing during transgression, and surprisingly record an Oligocene belt exposed very close to the present day one. Furthermore, among the differ-