EULER CHARACTERISTIC OF THE MILNOR FIBRE
OF PLANE SINGULARITIES

A. MELLE-HERNÁNDEZ

(Communicated by Ron Donagi)

Abstract. We give a formula for the Euler characteristic of the Milnor fibre
of any analytic function f of two variables. This formula depends on the
intersection multiplicities, the Milnor numbers and the powers of the branches
of the germ of the curve defined by f. The goal of the formula is that it use
neither the resolution nor the deformations of f. Moreover, it can be use for
giving an algorithm to compute it.

1. Introduction

In this note we deal with germs of analytic functions f of two complex variables
with $f(0) = 0$ and its factorization $f = f_1^{q_1} \cdots f_r^{q_r}$ into irreducible factors, such
that f_i/f_j, $1 \leq i, j \leq r$, are as power series not units. Let $(C, 0)$ be the germ of the
plane curve defined by the local equation $f = 0$ and let $(C_i, 0)$, $i = 1, \ldots, r$, be its
reduced branches defined by $f_i = 0$.

The local curve C defines a link with multiplicities $L := C \cap S^3_\varepsilon$, in the sphere
of radius $\varepsilon > 0$ around $0 \in \mathbb{C}^2$, which does not depend on ε provided ε is small
enough. The link L consists of the components $C_i \cap S^3_\varepsilon$, with multiplicities q_i and
determines the topological type of the germ C. Moreover, Milnor proved that the
map $f: S^3_\varepsilon \setminus L \to S^1$ is a C^∞-locally trivial fibration, the Milnor fibration. Any
fibre F of this fibration is called the Milnor fibre of f (see [M, Theorem 4.8]).
A’Campo [A] and Eisenbud-Neumann [EN], using different methods, calculated
many topological invariants of the fibration f from the resolution graph or the
splicing diagrams. We are only interested in the Euler characteristic $\chi(F)$ of the
surface F. If f is reduced, i.e. every power q_i is equal to one, the Euler characteristic
of F is $1 - \mu(C, 0)$, where $\mu(C, 0)$ is the Milnor number of the isolated singularity
of C. Moreover the Euler characteristic of F is related to topological and geometric
invariants of its branches by the well-known formula:

$$\chi(F) = -2 \sum_{1 \leq i < j \leq r} (C_i, C_j)_0 + \sum_{i=1}^{r} (1 - \mu(C_i)),$$

where $(C_i, C_j)_0$ is the intersection multiplicity of C_i and C_j at the origin and $\mu(C_i)$
is the Milnor number of C_i at the origin (e.g. see [BK]).

Received by the editors July 24, 1996 and, in revised form, June 27, 1997.
1991 Mathematics Subject Classification. Primary 32S05, 14H20; Secondary 14B05.
Key words and phrases. Euler characteristic, Milnor fibration, Milnor fibre.
This work was done under the partial support of CAYCIT PB94-291.
On the other hand, when \(f \) is non-reduced Schrauwen [S] expressed the Euler characteristic of \(F \) in terms of special points of suitable deformations of \(f \). For calculating \(\chi(F) \) in this case one can use the methods of A’Campo or Eisenbud-Neumann and construct the resolution graph or the splicing diagram.

The aim of this note is to give a closed formula for the Euler characteristic of \(F \) without the construction of these graphs.

For every \(q \in \mathbb{N}^r \) set
\[
F^q := \{ z \in S_e : \prod_{1 \leq i \leq r, q_i \neq 0} \left(\frac{f_i}{|f_i|} \right)^{q_i}(z) = 1 \text{ and } f_i(z) \neq 0 \ \forall i = 1, \ldots, r \}.
\]

Note that, for \(\epsilon \) small, the surface \(F^q \) is the Milnor fibre of the local curve \(C^q := \{ f_1^{q_1} \cdots f_r^{q_r} = 0 \} \) if and only if all \(q_i \neq 0 \). If some \(q_i \) are zero, but \(q \neq 0 \), then \(F^q \) is the Milnor fibre of \(\prod_{1 \leq i \leq r, q_i \neq 0} f_i^{q_i} \) with punctures, where the number of punctures equals \(\sum_{1 \leq i < j \leq r, q_i \neq 0, q_j = 0} (C_i, C_j)_0(q_i) \). For \(q = 0 \) the space \(F^q \) is just the complement of the link of the curve \(C \).

Our generalized and closed formula is:
\[
\chi(F^q) = - \sum_{1 \leq i < j \leq r} (C_i, C_j)_0(q_i + q_j) + \sum_{i=1}^r q_i (1 - \mu(C_i)).
\]

I am indebted to the referee for suggesting how to improve the presentation of the proof of the formula.

2. Proof of the formula

The formula follows from the two following lemmas.

Lemma 1. The function \(q \in \mathbb{N}^r \to \chi(F^q) \) is additive.

Proof. Let \(\pi : X \to \mathbb{C}^2 \) be a proper modification of \(\mathbb{C}^2 \) above the origin such that, for every point on the divisor \(E := \pi^{-1}(0) \), the total transform of the \(\bigcup_{1 \leq i \leq r} C_i \) has normal crossing singularities. Let \(C_i \) be the strict transform of \(C_i \) by \(\pi \) and \(E_\alpha, \alpha \in A \), the components of \(E \).

First assume \(q \neq 0 \). Put \(f^q = \prod_{1 \leq i \leq r, q_i \neq 0} f_i^{q_i} \). Observe that \(F^q \) retracts on \(E \setminus \left(\bigcup_{1 \leq i \leq r, q_i = 0} \overline{C_i} \right) \). With the formula of A’Campo we get:
\[
\chi(F^q) = \sum_{\alpha \in A} m(f^q, E_\alpha) \chi(\tilde{E}_\alpha),
\]
where \(\tilde{E}_\alpha := E_\alpha \setminus \left(\bigcup_{\beta \neq \alpha} E_\beta \cup \bigcup_{1 \leq i \leq r} C_i \right) \). Then
\[
\chi(F^q) = \sum_{\alpha \in A} \sum_{i=1}^r q_i m(f_i, E_\alpha) \chi(\tilde{E}_\alpha),
\]
since \(m(f^q, E_\alpha) = \sum_{1 \leq i \leq r} q_i m(f_i, E_\alpha) \).

To prove the additivity it remains to observe that \(\chi(F^0) = 0 \).

Put \(\epsilon_i = (0, \ldots, 1, \ldots, 0) \). From the additivity we get:
\[
\chi(F^q) = \sum_{i=1}^r q_i \chi(F^{\epsilon_i}).
\]
Lemma 2.
\[\chi(F^{e_i}) = - \sum_{\substack{j=1,\ldots,r \setminus i \neq j}} (C_i, C_j)_0 + (1 - \mu(C_i)). \]

Proof. Remember that \(F^{e_i} \) is the Milnor fibre \(F_i \) with \(\sum_{1 \leq j \leq r, j \neq i} (C_i, C_j)_0 \) punctures. \[\square \]

Remark that Lemma 1 holds for the case where the germs of the curves \(C_i \) are reduced and have no branch in common. Thus, if we assume
1. each \(f_i \) has no multiple components (i.e. \(f_i \) is squarefree) and
2. for \(i, j \in \{1, \ldots, r\}, i \neq j \), the germ \(f_if_j \) has no multiple components,
then we finally get for the Euler characteristic of the Milnor fibre of \(F \) of \(f = f_1^{q_1} \cdots f_s^{q_s}, q_i > 0 \), the formula:
\[\chi(F) = - \sum_{1 \leq i < j \leq s} (C_i, C_j)_0 (q_i + q_j) + \sum_{i=1}^s q_i (1 - \mu(C_i, 0)). \]

To have this formula for squarefree factorization is particularly useful for inductive calculations. If \(R \) is a computable ring with \(\text{char}(R) = 0 \) and \(f \) is a polynomial in \(R[x, y] \), then there exists an algorithm that computes a squarefree decomposition of \(f \) in \(R[x, y] \) (see [BWK, Proposition 2.86, Corollary 2.92]). This is also a squarefree decomposition in \(R\{x, y\} \) and one may then compute the intersection multiplicities and the Milnor numbers. I would like to thank Bernd Martin for showing me the implementation of this algorithm using the computer algebra system SINGULAR, [GPS].

References

[GPS] G.M. Greuel, G. Pfister, H. Schoenemann, SINGULAR. A computer algebra system for singularity theory and algebraic geometry, It is available via anonymous ftp from helios.mathematik.uni-kl.de.

Departamento de Algebra, Facultad de CC. Matemáticas, Universidad Complutense de Madrid, Madrid 28040, Spain
E-mail address: amelle@eucmos.sim.ucm.es