Teaching field geology in Spain

Enseñando geología de campo en España

R. Oyarzun¹, E. García-Romero¹, J. A. López-García¹, M. Regueiro¹²* and J. A. Molina³

¹ Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense, 28040 Madrid, Spain.
² Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain.
³ Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
* Corresponding author: m.regueiro@igme.es

Abstract. The Department of Crystallography and Mineralogy (Complutense University, Madrid) carries out every year a field geology course in San José – Rodalquilar (Almería, SE Spain). The region of Almería offers a unique opportunity for the teaching of field geology because of the variety of contrasted geologic scenarios: 1) Alpine metamorphic complexes; 2) Miocene sedimentary basins; 3) Miocene volcanic rocks including world-class pyroclastic deposits of almost every possible type; 4) epithermal gold and industrial minerals deposits; and 5) a second to none large fault zone (Carboneras Fault Zone, Serrata de Níjar). However, what makes different our field geology course is the fact that the students, in teams of 3 to 4 members, simulate a professional survey. Given that most students will end up working for companies, it is important that they receive some practical training before they leave the university.

Key words: field geology, Almería, volcanic rocks, training in geology.

Resumen. El Departamento de Cristalografía y Mineralogía de la Universidad Complutense de Madrid realiza anualmente un curso de geología de campo en San José – Rodalquilar (Almería, Sureste de España). La región de Almería ofrece una oportunidad única para la enseñanza de la geología de campo ya que en ella encontramos una gran variedad de escenarios geológicos: 1) complejos alpinos; 2) cuencas sedimentarias del Mioceno; 3) rocas volcánicas del Mioceno con extraordinarios ejemplos de diferentes tipos de depósitos piroclásticos; 4) yacimientos epitermales de oro, yacimientos de bentonitas, alunita, y zeolitas; y 5) una gran zona de falla (Zona de Falla de Carboneras, Serrata de Níjar). Sin embargo, lo que hace diferente nuestro curso de campo es el hecho de que los alumnos, en equipos de 3 o 4 miembros, simulen estar realizando un trabajo profesional. Dado que la mayor parte de los alumnos acabará trabajando para alguna empresa, nos parece importante que reciban alguna formación práctica antes de que acaben la carrera.

Palabras clave: geología de campo, Almería, rocas volcánicas, educación de la geología.

INTRODUCTION

The province of Almería (southeast Spain) offers a unique opportunity for the teaching of field geology, because within a relatively small area we can find a variety of contrasted geologic scenarios: Alpine metamorphic complexes of Palaeozoic to Triassic age, Miocene sedimentary basins, a Miocene volcanic block comprising a whole calc-alkaline suite with andesites, dacites and rhyolites, superb pyroclastic deposits of almost every possible type, epithermal gold and industrial minerals deposits (bentonites, zeolites, alunite), and a second-to-none fault zone running ENE-WSW (Carboneras fault zone) (Fig. 1).

The Department of Crystallography & Mineralogy (Faculty of Geological Sciences, Complutense University, Madrid) has been running in this realm for seven years a field geology course which includes a regional survey followed by detailed mapping of specific zones. So far, nice mapping within a beautiful geological scenario; however, what makes these activities different is the fact that the students, in teams of 3 to 4, simulate a field survey for either an exploration (Kondor Mining Co.) or an environmental company (Terra Green GmbH), both fictitious companies (Fig. 2).

Training takes place within the hilly semi-arid environment of the Cabo de Gata – Níjar Natural Park. The small coastal town of San José (Fig. 1) has hotels and a youth hostel, as well as a couple of small supermarkets from where food and water for the daily work can be bought. The town also has restaurants, pizzerias, pubs, and a small but nice beach and marina. Almería is one of the last relatively large and relatively unspoilt stretches of the Spanish Mediterranean.
Together with Sorbas, a few kilometres inland, this is surely the driest region of Europe with barely 150 mm of rain a year. Unsurprisingly, trees are thin on the ground, being restricted to ramblas and irrigated areas. The Cabo de Gata – Nijar Natural Park is home to some 1,000 species of vascular plants, around 12% of the total figure for Iberia, the vast majority of which is xerophytic and halophytic. Particularly characteristic is the fan dwarf palm (palmito) the only native palm in Europe (Iberia Nature, 2007).

GEOLOGIC SETTING AND FIELD ACTIVITIES

The study region is characterized by the following geologic units (from north to south) (Fig. 1): the Miocene Sorbas basin, the Alhamilla Sierra with Alpine metamorphic complexes; the Nijar basin, the Serrata de Nijar (carboneras) fault zone, and the Cabo de Gata volcanic block. The older rocks are those of two of the most important Alpine complexes of southern Spain: Alpujárries and Nevado Filabridges. These units were intensively folded during late Oligocene – Early Miocene, and later underwent extensional collapse through major detachment systems in Middle-Late Miocene time (Doblas and Oyarzun, 1989). The latter episode was accompanied by important calc-alkaline volcanism (andesites, dacites, rhyolites) and sedimentation within evaporitic sedimentary basins. The volcanic block is NE-SW oriented and comprises (from south to north) (Arribas, 1993): andesites (‘Old Andesites’), ignimbrites, breccias, and the domes, ignimbrites dacites to...
andesites from the Los Frailes Volcanic Complex (Middle Miocene); ignimbrite facies (El Cinto and Las Lázaras), fall deposits, and domes of Tortonian age: the Rodalquilar caldera, with strong alteration (hydrothermal and supergene) and epithermal gold-alunite mineralization (Oyarzun et al., 1995). Subsequent large (40+ km) ENE-WSW sinistral wrench faulting during uppermost Miocene (Carboneras Fault Zone: CFZ) (Keller et al., 1997) gave rise to the formation of one of the most remarkable morphological features of the Níjar – San José sector, the so-called Serrata de Níjar, a compressive duplex characterized by large-scale pervasive deformation of the Miocene sedimentary and volcanic units.

The students first have an introduction to the regional geology and gather data for a cross section that comprises from NW to SE: the Alpujárrides Complex near to the town of Níjar, the Serrata de Níjar fault zone, and the volcanic block. After this helicopter-view work is completed, the teams are distributed within three main field zones labelled as (from north to south): Kondor 1, 2 and 3. This local geology part of the work (at the detailed scales of 1:2,500 and 1:5,000) takes place at the Rodalquilar volcanic caldera (Kondor 1), the Morrón the Mateo – Presillas Bajas sedimentary and pyroclastic outcrops (Kondor 2), and the Cala Higuera zone (Kondor 3) along the border of the Los Frailes volcanic complex (Fig. 1). Each lecturer specifically supervises one or two teams in the Kondor 1-3 zones (Fig. 1).

THE REASONS BEHIND TWO FICTITIOUS COMPANIES

Given that most students will end up working for companies (only a minority will follow a university research career), it is important that they receive some practical training before they leave the university. Although every single company that hires geologists has its own methods and procedures, we can teach some basic skills that may be useful later. Thus, we combine the teaching of field mapping with the building up of a professional attitude towards the time invested in the field activities. The writing of a report for a company (with a specific style) is another of the priorities of this field course. Environmental impact derived from mining activities: 6.1 History of mining activities in the zone, 6.2 ore bodies, 6.4. Alteration (hydrothermal and/or supergene), 6.5. Potential environmental impacts.

ON TEAM BUILDING

Geology, for whatever reason, favours individualism. Although there is nothing (basically) wrong with this, in society we seldom work as lone wolves but as wolf packs in which cooperation is needed and prized. In this respect, if we want to prepare students for the real world, team building must be an essential part of the training. Thus, the final report must be written by a team of 3 to 4 students, that may or may not agree on either the style of the report, or worse, the conclusions. This is an essential part of the exercise, because success or failure will much depend on cooperation. We nevertheless control individual achievement by means of an initial test on the geology, economic geology, and environmental setting of the study zone, and the quality of each field notebook. Preparation for the initial test is gained from the Internet by means of a specific web page that contains vital geologic and environmental information for the field activities: http://www.ucm.es/info/crismine/San_Jose_web/index.htm. The page includes (among others) the following documents: a virtual trip through the zone, an introduction to rock types, a global picture of the volcanism, the environmental setting, and a document on how to write the report. The students also receive a DVD that includes the contents of the web page plus geologic videoclips (recorded by the lecturers), orthophotos, and maps of soils and vegetation.

ON THE IMPORTANCE OF A REPORT

The report that the students must produce includes a series of items: General, for all teams: 0) Cover: indicating title and authors, 1) Index: indicating chapters and pages. 2) Abstract: brief and informative, 300 words. 3) Introduction: 3.1 Aims, 3.2 Location and access to the zone, 3.3 Climate and physiography, 3.4 methods. 4) Regional geologic setting: 4.1 Main geologic units, 4.2 Tectonic and structural setting, 5) Local geology (assigned zone): 5.1 Description of volcanic, subvolcanic and sedimentary units, 5.2 Stratigraphic column, 5.3 Structure. Those who choose the Kondor Mining option: 6A) Economic geology: 6.1 History of mining activities in the zone, 6.2 Mineralization types, 6.3 Geology of the ore bodies, 6.4. Alteration (hydrothermal and/or supergene), 6.5. Potential environmental impacts. Those who choose the Terra Green option: 6B) Environmental impact derived from mining activities: 6.1 History of mining activities in the zone, 6.2 Environmental mineralogy, 6.3 Location and characterization of abandoned mineral dumps, 6.4 Potential impacts on the local vegetation, 6.5 Solution proposals, 6.6. Other impacts (visual, water and soil contamination), 6.7 Conservation of vegetation.
The students have three weeks to write the report and during this time they are closely monitored. They bring drafts that are corrected by the team of lecturers until a minimum standard of quality is reached. Apart from the text and figures the report must include a regional cross section, a map of the assigned zone, and a local stratigraphic column and cross section. No important errors are allowed to be present in the last four items.

FINAL REMARKS

This is a fieldwork experience that has worked remarkably well along the years. Every year brings new ideas that become incorporated in the following season. For example, given the importance of the flora and vegetation of the zone, a botanist was added to the team in June 2007. This lecturer taught the students subjects such as conservation and geobotany. We must bear in mind that one of the most peculiar Mediterranean areas is that of the SE of the Iberian Peninsula, where the semi-arid climate controls the occurrence of shrubland as natural potential vegetation. This vegetation is constituted by a floristic combination unique to Europe. In this thorny shrubland, phytogeographic elements, whose origins can be traced to the lower Cretaceous, grow together, such as *Maytenus europaeus* (harto) or *Ziziphus lotus* (azufaifo). Also, there are Cainozoic elements such as *Fagonia cretica* or *Lycium intrincatum* (cambrón), and xerophytic elements such as *Periploca laevigata* (cornical) related to the arid phases of the Messinian. Geobotanically, we found intimate spatial relationships between plants and rocks, for example that of *Genista umbellata* with dacites from a block and ash complex in Cala Higuera. The important thing regarding this is that the students were able to see this relationship and trace it throughout the outcrops in Cala Higuera.

For this year of 2008, we plan to incorporate to the field work the use of GPS units with topographic maps and topographic mapping software to improve the students location abilities and their mastering of the new available technologies.

Although it is not our intention to teach others how to run a field geology course, we nevertheless believe that sharing this experience may help to improve teaching in times in which environmental issues are becoming progressively important. Geologists have a lot to say on these matters, and it is up to us to incorporate and combine geology and environmental mapping. Besides, we insist on the importance of team building and report writing as essential chapters in the education of students. Finally, although sedimentary, plutonic, and metamorphic rocks can be found almost everywhere in the UE, volcanic outcrops are rather scarce, and if we ask for a combination of volcanic rocks, mineralizing processes and environmental issues, Almería is the best answer.

REFERENCES


