Publication:
Periodized discrete elasticity models for defects in graphene

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The cores of edge dislocations, edge dislocation dipoles, and edge dislocation loops in planar graphene have been studied by means of periodized discrete elasticity models. To build these models, we have found a way to discretize linear elasticity on a planar hexagonal lattice using combinations of difference operators that do not symmetrically involve all the neighbors of an atom. At zero temperature, dynamically stable cores of edge dislocations may be heptagon-pentagon pairs (glide dislocations) or octagons (shuffle dislocations) depending on the choice of initial configuration. Possible cores of edge dislocation dipoles are vacancies, pentagon-octagon-pentagon divacancies, Stone-Wales defects, and 7-5-5-7 defects. While symmetric vacancies, divacancies, and 7-5-5-7 defects are dynamically stable, asymmetric vacancies and 5-7-7-5 Stone-Wales defects seem to be unstable.
Description
Keywords
Citation
1 K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004). 2 J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth and S. Roth, Nature 446, 60 (2007). 3 K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005). 4 A.K. Geim and K.S. Novoselov, Nature Materials 6, 183(2007). 5 Y. Ma, P.O. Lehtinen, A.S. Foster, R.M. Nieminen, New J. Phys. 6, 68 (2004). 6 N.M.R. Peres, F. Guinea and A.H. Castro-Neto, Phys. Rev. B 73, 125411 (2006); N. M. R. Peres, F. D. Klironomos, S.-W. Tsai, J. R. Santos, J. M. B. Lopes dos Santos and A. H. Castro Neto, Europhys. Lett.80, 67007 (2007). 7 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, arXiv:0709.1163, to appear in Rev. Mod. Phys. 8 A. Cortijo and M.A.H. Vozmediano, Nucl. Phys. B 763, 293 (2007). 9 A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, Nature 430, 870 (2004). 10 J. Coraux, A. T. N’Diaye, C. Busse and T. Michely, Nano Lett. 8, 565 (2008). 11 C.P. Ewels, M.I. Heggie and P.R. Briddon, Chem. Phys. Lett. 351, 178 (2002).
Collections