On M-Spaces and Banach Spaces

Francisco Gallego Lupiánez

Dept. Mathematics, Univ. Complutense, 28040 Madrid, Spain
FG_Lupianez@Mat.UCM.Es

Abstract

We define in this paper the concept of C-space, related with M-spaces and Banach spaces. We obtain various properties on these spaces and propose some open problems.

Mathematics Subject Classification: 54E18, 54C25, 46B25

Keywords: topological spaces, M-spaces, Banach spaces, embedding

1 Introduction

There exist three causes that motive this new paper. First, an early theorem of Corson, also the concept of M-space (defined by K.Morita), and finally a paper on Banach spaces by the author:

The Corson Theorem. [3] For any covering \mathcal{U} of a infinite dimensional reflexive Banach space B, where \mathcal{U} is formed by bounded, convex sets, there is not a point x in B such that each neighborhood of x meets only finitely many members of \mathcal{U}, i.e., \mathcal{U} is not locally finite.

In our paper [6], we study some problems related to the Corson Theorem. In particular, we proved that: "For every $r \geq 0$, there exits an open covering of c_0, which is locally finite and is formed by balls of radius r".

We will use in this paper the concept of M-space:

Definition 1. [7] A paracompact space X is called a M-space if there is some perfect map from X onto some metric space.
2 Main results.

Definition 2. Let X be a topological space. We will say that X is a C-space if there is some Banach space E and some perfect map f from X onto E such that exists a locally finite covering of X formed by pre-images of open balls of radius 1 by the map f.

Remarks. 1. If X is a C-space then X is a paracompact M-space.
2. c_0, E_{∞}, IR^n are C-spaces.

Proposition 1. Let X be a topological space, E be a Banach space and f be a perfect map from X onto E. Then

$$V = \{ f^{-1}(B_1(x_j))| j \in J \} \text{ is a locally finite covering of } X, \text{ if and only if } \{ B_1(x_j)| j \in J \} \text{ is a locally finite covering of } E.$$

Proof. (\Rightarrow) If V covers X also $\{ B_1(x_j)| j \in J \}$ covers E, because f is onto.

For each $z \in E$ and each $x \in f^{-1}(z)$ there exists an open neighborhood U^z_x of x, such that meets only finitely members of V. Then $\{ U^z_x| x \in f^{-1}(z) \}$ is an open covering of $f^{-1}(z)$, and $f^{-1}(z) \subset \cup_{k=1}^{r} U^x_z$ (for some $x_1,\ldots,x_r \in f^{-1}(z)$) because f is a perfect map.

Since f is closed, there exists an open neighborhood W^z of z such that $f^{-1}(W^z \cap \cup_{k=1}^{r} U^x_z)$. Then, $f^{-1}(W^z)$ meets only finitely members of V, and also W^z meets only finitely members of $\{ B_1(x_j)| j \in J \}$.

(\Leftarrow) If $\{ B_1(x_j)| j \in J \}$ covers E, then V covers X.

For each $x \in X$ there exists an open neighborhood $V^{f(x)}$ of $f(x)$ such that meets only finitely members of $\{ B_1(x_j)| j \in J \}$. Clearly, $f^{-1}(V^{f(x)})$ is an open neighborhood of x and meets only finitely members of V.

Corollary 1. Let X be a topological space. Then, X is a C-space if and only if there exists a Banach space E that has a locally finite open covering formed by balls of fixed radius, and a perfect map f from X onto E.

Corollary 2. For each compact space K, we have that $c_0 \times K$ is a C-space.

Proof. Since the projection map p_1 is a perfect map from $c_0 \times K$ onto c_0.

Corollary 3. For each compact space K, we have that $IR^{1N} \times K$ is a C-space.
Proof. It follows from the above Corollary, because c_0 is homeomorphic to \mathbb{IR}^N (theorems of Kadec [5] and Anderson [1]).

Proposition 2. Let X be a topological space. If X is separable and C-space, then it is homeomorphic to some closed subset of $\mathbb{IR}^N \times I^N$.

Proof. Since X is a separable C-space, there is some separable Banach space E and some perfect map from X onto E. From [8, Theorem 2] it follows that X is homeomorphic to a closed subset in $E \times I^N$. Finally, therems of Kadec [5] and Anderson [1] yield the conclusion.

3 Open problems.

1. Let X be a topological space. Have we that X is a C-space if and only if X is homeomorphic to a closed subset of $\mathbb{IR}^N \times I^N(X)$? (where $w(X)$ is the weight of X).

2. Have the normed spaces whith locally finite coverings by balls analogous properties to totally bounded spaces?

4 References

Received: November 21, 2007