Publication:
2-D numerical simulation of the ambipolar filamentation of turbulent magnetic fields

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2000
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Magnetic fields play an important role in astrophysics and they often dominate the behavior of magnetized media. We simulate the mechanism (Tagger et al., 1995) by which turbulence in a weakly ionized plasma, as it cascades to the ambipolar scale (where the neutrals are imperfectly coupled to the ions) leads to a filamentation of the magnetic flux tubes: the turbulent velocity of the neutrals is higher in the more ionized regions, because they are better coupled to the ions. This results in a non-linear ponderomotive (< v.del v >) force driving them out of the ionized regions, so that the initial ionization inhomogeneities are strongly amplified. This effect causes the ions and magnetic field to condense and separate from the neutrals, resulting in a filamentary structure. We present the first results of a 2-D, 2-fluid (ions and neutrals) simulation, where a magnetized, weakly ionized plasma is submitted to turbulence in the ambipolar frequency range. We discuss the efficiency of this mechanism, the filamentary structure it should produce, and its relevance to the astrophysical context.
Description
Conference on Astrophysical Dynamics, APR 14-16, 1999, Evora (Portugal)
Keywords
Citation
De Pontieu, B., Haerendel, G.: 1998, A&A 338, 729. Franqueira, M., Tagger, M., Gómez de Castro, A. I.: 1999, A&A (submitted). Kulsrud, R., Pearce, W.: 1969, ApJ 156, 445. Myers, P.C., Goodman, A.A.:1988, ApJ Lett 326, L27. Stone, J.M., Norman, M.L.: 1992, ApJ SS 80, 753. Tagger, M., Falgarone, E., Shukurov, A.: 1995, A&A 299, 940.
Collections