Publication:
Crecimiento y caracterización de micro y nanoestructuras de óxidos de hierro y estaño (Growth and characterization of iron and tin oxides micro and nanostructures)

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2012
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
En este trabajo se han obtenido nanoestructuras monocristalinas de α-Fe_2O_3 (hematite)y SnO_2 por oxidación térmica del correspondiente elemento metálico, analizándose sus propiedades estructurales, composicionales y luminiscentes mediante un conjunto de técnicas de caracterización que incluye microscopía electrónica de barrido y transmisión, microanálisis de rayos X, espectroscopia Raman, difracción de rayos X y fotoluminiscencia. Además, se ha investigado la posibilidad de dopar las nanoestructuras de hematite con Sn y las de SnO_2 con hierro. Se demuestra, mediante magnetometría SQUID, el dopado efectivo de nanohilos de SnO_2 con Fe. Así mismo, se demuestra la posibilidad de obtener heteroestructuras SnO_2-Fe_2O_3, investigándose su mecanismo de crecimiento y algunas de sus propiedades físicas.[ABSTRACT] In this work, α-Fe_2O_3 (hematite) and SnO_2 nanostructures have been grown by thermal oxidation of the corresponding metallic element. Their structural, compositional and luminescence properties have been assessed by a set of complementary characterization techniques including scanning and transmission electron microscopy, energy dispersive x-ray microanalysis, x-ray diffraction, Raman spectroscopy and photoluminescence. Doping of hematite nanostructures with Sn as well as doping of SnO_2 nanostructures with iron has been also studied. SQUID measurements reveal effective iron incorporation into SnO_2 nanowires. The growth and of SnO_2-Fe_2O_3 heterostructures has been also accomplished, and some of their physical properties investigated.
Description
Máster de Física Aplicada. Facultad de Ciencias Físicas. Curso 211-2012
Unesco subjects
Keywords
Citation
[1] A. A. Akl, Appl. Surf. Sci. 233, 307 (2004). [2] B. S. Zou and V. Volkov, J. Phys. Chem. Solids 261, 2757 (2000). [3] B. S. Zou, W. Huang, M. Y. Han, S. Li. X. Wu et al. J. Phys. Chem. Solids 58, 1315 (1997). [4] A. Kay, I. Cesar, and M. Grätzel, J. Am. Chem. Soc. 128, 15714 (2006). [5] L. Huo, W. Li, L. Lu, H. Cui, S. Xi, J. Wang et al. Chem. Mater. 12, 790 (2000). [6] Y. W. Zhu, T. Yu, C. H. Sow, Y.J. Liu. A.T. Wee et al. Appl. Phys. Lett. 87, 023103 (2005). [7] Z. Fan, X. Wen, S. Yang, and J. G. Lu, Appl. Phys. Lett. 87, 013113 (2005). [8] X. Yu, C. Cao and X. An, Chem. Mater. 20, 1936 (2008). [9] T. Ohmori, H. Takahashi, H. Mametsuka, and E. Suzuki, Phys. Chem. Chem. Phys. 2, 359 (2000). [10] A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005). [11] J.D. Prades, J. Arbiol, A. Cirera and J. R. Morante, Sens. Actuators B, Chem. 126, 6 (2007). [12] W. Göpel and K. D. Schierbaum, Sens. Actuators B, Chem. 26, 1 (1995). [13] G. Sverveglieri, Sens. Actuators B, Chem. 23, 103 (1995). [14] J. F. Wagner, Science 300, 1245 (2003). [15] R. E. Presley, C. L. Munsee, C. H. Park, D. Hong et al. J. Phys. D 37, 2810 (2004). [16] M. J. Muller y M. E. Warwick, J. Catal. 29, 441 (1973). [17] Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nanoletters 11, 2119 (2011). [18] J. S. Jang, J. Lee, H. Ye, F. R. F. Fan, A. J. Bard, J. Phys. Chem. C 113, 6719 (2009). [19] J. J. Beltrán. L. C. Sánchez. J. Osorio et al. J. Mater. Sci. 45, 5002 (2010). [20] C. Díaz-Guerra, L. Pérez, J. Piqueras and M. F. Chioncel, J. Appl. Phys. 106, 104302 (2009). [21] M. Gaudon, N. Pailhé, J. Majimel, A. Wattiaux et al. J. Solid State Chem. 183, 2101 (2010). [22] D. Maestre, A. Cremades and J. Piqueras, J. Appl. Phys. 97, 044316 (2005) [23] G. Gouadec and P. Colomban, P. Crys. Grow. Char. Mater. 53, 1 (2007). [24] U. P. Deshpande, T. Shripathi, D. Jain, A. V. Narlikar et al. J. Appl. Phys. 101, 064304 (2007). [25] D. Bersani, P. P. Lottici and A. Montenero, J. Raman Spectrosc. 30, 355 (1999). [26] O. N. Shebanova and P. Lazor, J. Solid State Chem. 174, 424 (2003). [27] S. P. S. Porto and R. S. Krishnan, J. Chem. Phys. 47, 3 (1967). [28] M. F. Chioncel, C. Díaz-Guerra and J. Piqueras, J. Appl. Phys. 104, 124311 (2008). [29] N. J. Cherepy, D. B. Liston, J. A. Lovejoy et al. J. Phys. Chem. B 102, 770 (1998). [30] L. Yuan, Y. Wang, R. Cai, Q. Jiang et al. Mater. Sci. Engineering B 177, 327 (2012). [31] L. Chen, X. Yang, J. Chen, J. Liu et al. Inorg. Chem. 49, 8419 (2010). [32] S. Shim and T. S. Duffy, American Mineralogist 87, 318 (2001). [33] X. Mathew and J. P. Enriquez, J. Appl. Phys. 100, 073907 (2006). [34] A. Dièguez, A. Romano-Rodríguez, A. Vilà and J. R. Morante, J. Appl. Phys. 90, 1550 (2001). [35] P. Merle, J. Pascual, J. Camassel and H. Mathieu, Phys. Rev. B 21, 1617 (1980). [36] J. Oviedo and M.J. Gillan, Surf. Sci 463, 93 (2000). [37] Y. Y. Yu, X. F. Rui, Y. Y. Fu and H. Zhang, Chem. Phys. Lett. 410, 36 (2005). [38] C. H. Kim, H. J. Chun, D. S. Kim, S. Y. Kim et al. Appl. Phys. Lett. 89, 223103 (2006). [39] G. GopalKhan, S. Ghosh, and K. Mandal, J. Solid State Chem. 186, 278 (2012). [40] A. Espinosa, N. Sánchez, J. Sánchez-Marcos, A. de Andrés, and M. C. Muñoz, J. Phys. Chem. C 115, 24054 (2011). [41] Jin Lu, Dawei Qi, Chunhui Deng,* Xiangmin Zhang and Pengyuan Yang, Nanoscale 2, 1892 (2010). [42] W. W. Zhou, C. W. Cheng, J. P. Liu, Y. Y. Tay, J. Jiang, X. T. Jia, J. X. Zhang, H. Gong, H. H. Hng, T. Yu, and H. J. Fan, Adv. Funct. Mater. 21, 2439 (2011).