Publication:
Self-similar blow-up for a reaction-diffusion system

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1998-09-24
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This work is concerned with the following system: [GRAPHICS] which is a model to describe several phenomena in which aggregation plays a crucial role as, for instance, motion of bacteria by chemotaxis and equilibrium of self-attracting clusters. When the space dimension N is equal to three, we show here that (S) has radial solutions with finite mass that blow-up in finite time in a self-similar manner. When N = 2, however, no radial solution with finite mass may give rise to self-similar blow-up.
Description
Keywords
Citation
P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., to appear. S. Childress, J.K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981) 217-237. J.W. Dold, Analysis of the early stage of thermal runaway, Quart. J. Mech. Appl. Math. 38 (1985) 361-387. Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297-319. V.A. Galaktionov, S.A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Differential Equations 22 (7) (1986) 1165-1173. M.A. Herrero, J.J.L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann. 306 (3) (1996) 583-623. M.A. Herrero, J.J.L. Velázquez, Chemotactic collapse for the Keller-Segel model. J. Math. Biol. 35 (1996) 177-194. M.A. Herrero, J.J.L. Velázquez, A blow-up mechanism for a chemotaxis problem, Annali Scuola Normale Sup. Pisa, to appear. M.A. Herrero, E. Medina, J.J.L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity 10 (1997) 1739-1754. W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (2) (1992) 819-824. E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 399-415. A.A.Lacey, The form of blow-up for nonlinear parabolic equations, Proc. Roy. Soc. Edinburg A 98 (1984) 183-202. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. (1995) 1-21. V. Nanjundiah, Chemotaxis signal relaying and aggregation morphology, J. Theor. Biology 42 (1973) 63-105. J.J.L. Velázquez, Classification of singularities for blowing-up solutions in higher dimensions, Trans. Amer. Math. Soc. 338 (1) (1993) 441-464. G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rat. Mech. Anal. 119 (1992) 355-391. G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math. 59 (1992) 251-272.
Collections