Universidad Complutense de Madrid
E-Prints Complutense

On universal groups and three-manifolds

Impacto

Downloads

Downloads per month over past year

Montesinos Amilibia, José María and Hilden, Hugh Michael and Lozano Imízcoz, María Teresa and Whitten, Wilbur Carrington (1987) On universal groups and three-manifolds. Inventiones Mathematicae, 87 (3). pp. 441-456. ISSN 0020-9910

[img] PDF
Restringido a Repository staff only

649kB

Official URL: http://www.springerlink.com/content/k332884x7m10l654/


URLURL Type
http://www.springerlink.com/Publisher


Abstract

Let P be a regular dodecahedron in the hyperbolic 3-space H3with the dihedral angles 90∘. Choose 6 mutually disjoint edgesE1,E2,⋯,E6 of P such that each face of P intersects E1∪E2∪⋯∪E6 in one edge and the opposite vertex. Let U be the group of orientation-preserving isometries of H3 generated by 90∘-rotations about E1,⋯,E6. It was observed by W. Thurston that H3/U=S3 and that the projection H3→H3/U is a covering branched over the Borromean rings with branching indices 4. The main result of the paper is the following universality of U. Theorem: For every closed, oriented 3-manifold M there exists a subgroup G of U of finite index such that M=H3/G. In other words M is a hyperbolic orbifold finitely covering the hyperbolic orbifold H3/U.
The main ingredient of the proof is the strict form of the universality of the Borromean rings (earlier obtained by the first three authors): each closed, oriented 3-manifold is shown to be a covering of S3 branched over the Borromean rings with indices 1, 2, 4.
This theorem offers a new approach to the Poincaré conjecture: If M=H3/G as above and π1(M)=1 then G is generated by elements of finite order. The authors start off an algebraic investigation of U⊂PSL2(C) by constructing three generators of U which are 2×2 matrices over the ring of algebraic integers in the field Q(2√,3√,5√,1√+5√,−1−−−√).


Item Type:Article
Uncontrolled Keywords:regular dodecahedron; hyperbolic 3-space; covering branched over the Borromean rings; 3-manifold; hyperbolic orbifold; Poincaré conjecture; PSL 2 (bbfC)
Subjects:Sciences > Mathematics > Topology
ID Code:17162
Deposited On:22 Nov 2012 10:20
Last Modified:12 Dec 2018 15:13

Origin of downloads

Repository Staff Only: item control page