Cirre, F.J. y Gamboa, J. M. (2000) On the problem of finding the full automorphism group of a compact Klein surface. In Contribuciones Matemáticas. Homenaje al Prof. D. Joaquín Arregui Fernández. Universidad Complutense de Madrid, pp. 105-126. ISBN 84-7491-581-3
![]() |
PDF
Restringido a Sólo personal autorizado del repositorio 324kB |
Resumen
The paper under review surveys most known results about the following problem: let $X$ be a compact topological surface of algebraic genus $p>1$, with or without boundary, orientable or not. How to calculate all groups acting as the full automorphism group of some structure of Klein surface having $X$ as underlying topological surface? It must be remarked that from Riemann's uniformization theorem, and since $\Aut(X)$ has no more than 168 $(p-1)$ automorphisms (including the orientation-reversing ones), this problem is of a finite nature. In practice this is an unaccessible task except for low values of $p$ or some extra conditions on the surfaces one is dealing with.
Tipo de documento: | Sección de libro |
---|---|
Palabras clave: | automorphism groups; n.e.c. group; algebraic equation; Klein surfaces |
Materias: | Ciencias > Matemáticas > Álgebra |
Código ID: | 17249 |
Depositado: | 28 Nov 2012 10:13 |
Última Modificación: | 31 Mar 2016 11:09 |
Descargas en el último año
Sólo personal del repositorio: página de control del artículo