Publication:
Boundedness and blow up for a semilinear reaction-diffusion system

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1991-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider the semilinear parabolic system (S) { ut-Δu=vp ; vt-Δv=uq, where x Є R(N) (N ≥ 1), t > 0, and p, q are positive real numbers. At t=0, nonnegative, continuous, and bounded initial values (u0(x), v0(x)) are prescribed. The corresponding Cauchy problem then has a nonnegative classical and bounded solution (u(t, x), v(t, x)) in some strip S(T)= [0, T) x R(N), 0 < T ≤ ∞. Set T* = sup {T> 0 : u, v remain bounded in S(T)}. We show in this paper that if 0 < pq ≤ 1, then T* = + ∞, so that solutions can be continued for all positive times. When pq > 1 and (γ + 1 ) / (pq - 1) ≥ N/2 with γ = max {p, q}, one has T* < + ∞ for every nontrivial solution (u, v). T* is then called the blow up time of the solution under consideration. Finally, if (γ + l)(pq - 1) < N/2 both situations coexist, since some nontrivial solutions remain bounded in any strip S(T) while others exhibit finite blow up times.
Description
Keywords
Citation
J. AGUIRRE AND M. ESCOBEDO, A Cauchy problem for ut- Δu=up : Asymptotic behaviour of solutions, Ann. Fac. Sci. Toulouse Math. 8 (1986-1987), 175-203. D. G. ARONSON AND H. WEINBERGER, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), 33-76. J. M. BALL, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2) 28 (1977), 473-486. P. BARAS AND L. COHEN, Complete blow-up after Tmax for the solution of a semilinear heat equation, J. Funct. Anal. 71 (1987), 143-174. S. D. EIDEL’MAN, “Parabolic Systems,” North-Holland, Amsterdam, 1969. M. FLOATER AND J. B. MCLEOD, in preparation. A. FRIEDMAN, “Partial Differential Equations of Parabolic Type,” Krieger, Malabar, FL, 1983. A. FRIEDMAN AND Y. GIGA, A single point blow up for solutions of nonlinear parabolic systems, J. Fac. Sci. Univ. Tokyo Sect. I 34, No. 1 (1987), 65-79. A. FRIEDMAN AND J. B. MCLEOD, Blow up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447. H. FUJITA, On the blowing up of solutions of the Cauchy problem for ut = Δu + u(1+x), J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124. Y. GIGA AND R. V. KOHN, Asymptotically self-similar blow-up of semilinear heat equations, Commun. Pure Appl. Math. 38 (1985), 297-319. V. A. GALAKTIONOVS, S. P. KURDYUMOV, AND A. A. SAMARSKII, A parabolic system of quasilinear equations I, Differential Equations 19, No. 12 (1983), 2133-2143. V. A. GALAKTIONOV, S. P. KURDYUMOV, AND A. A. SAMARSKII, A parabolic system of quasilinear equations II, Differential Equations 21, No. 9 (1985), 1544-1559. 0. KAVIAN, Remarks on the behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincare 4, No. 5 (1987), 405-421. K. KOBAYASHI, T. SIRAO, AND H. TANAKA, On the growing up problem for semilinear heat equations, J. Math. Sot. Japan 29 (1977) 407-429. A. A. LACEY, The form of blow-up for nonlinear parabolic equations, Proc. Roy. Soc. Edinburgh A 98 (1984), 183-202. A. A. LACEY, Global blow-up of a nonlinear heat equation, Proc. Roy. Soc. Edinburgh A 104 (1986), 161-167. F. B. WEISSLER, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J. 29, No. 1 (1980), 79-102. F. B. WEISSLER, Existence and nonexistence of global solutions for a semilinear heat equations, Israel J. Math. 38, Nos. 1-2 (1981) 29-40. F. B. WEISSLER, Single point blow up of semilinear initial value problems, J. Differential Equations 55 (1984), 204-224.
Collections