Impacto
Downloads
Downloads per month over past year
Iblisdir, S. and Pérez García, David and Aguado, M. and Pachos, J. (2010) Thermal states of anyonic systems. Nuclear Physics B, 829 . pp. 401424. ISSN 05503213

PDF
585kB 
Official URL: http://www.sciencedirect.com/science/article/pii/S055032130900604X
URL  URL Type 

UNSPECIFIED  Publisher 
Abstract
A study of the thermal properties of twodimensional topological lattice models is presented. This work is relevant to assess the usefulness of these systems as a quantum memory. For our purposes, we use the topological mutual information I(topo) as a "topological order parameter". For Abelian models, we show how I(topo) depends on the thermal topological charge probability distribution. More generally, we present a conjecture that I(topo) can (asymptotically) be written as a KullbackLeitner distance between this probability distribution and that induced by the quantum dimensions of the model at hand. We also explain why I(topo). is more suitable for our purposes than the more familiar entanglement entropy S(topo). A scaling law, encoding the interplay of volume and temperature effects, as well as different limit procedures, are derived in detail. A nonAbelian model is next analyzed and similar results are found. Finally, we also consider, in the case of it oneplaquette toric code, an environment model giving rise to a simulation of thermal effects in time.
Item Type:  Article 

Uncontrolled Keywords:  Mesoscale; Nanoscale Physics 
Subjects:  Sciences > Physics > Mathematical physics 
ID Code:  17664 
Deposited On:  15 Jan 2013 09:29 
Last Modified:  04 Dec 2014 10:49 
Origin of downloads
Repository Staff Only: item control page