Publication:
Measurement-based quantum computation beyond the one-way model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We introduce schemes for quantum computing based on local measurements on entangled resource states. This work elaborates on the framework established in Gross and Eisert [Phys. Rev. Lett. 98, 220503 (2007); quant-ph/0609149]. Our method makes use of tools from many-body physics-matrix product states, finitely correlated states, or projected entangled pairs states-to show how measurements on entangled states can be viewed as processing quantum information. This work hence constitutes an instance where a quantum information problem-how to realize quantum computation-was approached using tools from many-body theory and not vice versa. We give a more detailed description of the setting and present a large number of examples. We find computational schemes, which differ from the original one-way computer, for example, in the way the randomness of measurement outcomes is handled. Also, schemes are presented where the logical qubits are no longer strictly localized on the resource state. Notably, we find a great flexibility in the properties of the universal resource states: They may, for example, exhibit nonvanishing long-range correlation functions or be locally arbitrarily close to a pure state. We discuss variants of Kitaev's toric code states as universal resources, and contrast this with situations where they can be efficiently classically simulated. This framework opens up a way of thinking of tailoring resource states to specific physical systems, such as cold atoms in optical lattices or linear optical systems.
Description
Keywords
Citation
D. Gross and J. Eisert, Phys. Rev. Lett. 98, 220503 (2007). R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001). R. Raussendorf and H.-J. Briegel, Quant. Inf. Comp. 6, 433 (2002). H.-J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001). M. Hein, W. D¨ur, J. Eisert, R. Raussendorf, M. Van den Nest, and H.-J. Briegel, quant-ph/0602096. M.A. Nielsen, quant-ph/0504097; D.E. Browne and H.-J. Briegel, quant-ph/0603226. M. Hein, J. Eisert, and H.-J. Briegel, Phys. Rev. A 69, 062311 (2004); R. Raussendorf, D.E. Browne, and H.-J. Briegel, ibid. 68, 022312 (2003); D. Schlingemann and R.F.Werner, ibid. 65, 012308 (2002). O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. H¨ansch, and I. Bloch, Nature 425, 937 (2003). M.J. Hartmann, F.G.S.L. Brandao, M.B. Plenio, Nature Physics 2, 855 (2006); A.D. Greentree, C. Tahan, J.H. Cole, and L.C. L. Hollenberg, ibid. 2, 856 (2006). C. Cabrillo, J.I. Cirac, P. Garcia-Ferndandez, and P. Zoller, Phys. Rev. A 59, 1025 (1999); D.E. Browne, M.B. Plenio, and S.F. Huelga, Phys. Rev. Lett. 91, 067901 (2003). P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature 434, 169 (2005). D.E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005). D. Gross, K. Kieling, and J. Eisert, Phys. Rev. A 74, 042343 (2006); K. Kieling, D. Gross, and J. Eisert; J. Opt. Soc. Am. B 24(2), 184 (2007). H. Haeffner et al., Nature 438, 643(2005). G. Vidal, Phys. Rev. Lett. 91, 147902 (2003); R. Jozsa, quant-ph/0603163; I. Markov and Y. Shi, quant-ph/0511069; Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 2006). M. Van den Nest,W. D¨ur, G. Vidal, and H.J. Briegel, Phys. Rev. A 75, 012337 (2007). D. Gottesman and I.L. Chuang, Nature 402, 390 (1999); M.A. Nielsen, Phys. Lett. A. 308, 96 (2003); D.W. Leung, quant-ph/0111122. P. Aliferis and D.W. Leung, Phys. Rev. A 70, 062314 (2004); A.M. Childs, D.W. Leung, and M.A. Nielsen, quant-ph/0404132 (2004); P. Jorrand and S. Perdrix, quant-ph/0404125 (2004). R. Jozsa, quant-ph/0508124. F. Verstraete and J.I. Cirac, Phys. Rev. A 70, 060302(R)(2004). I. Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki, ibid. 59, 799 (1987). V. Danos, E. Kashefi, and P. Panangaden, quant-ph/0704.1263 (2007). M.S. Tame, M. Paternostro, M.S. Kim, and V. Vedral, Phys. Rev. A 73, 022309 (2006). M. Van den Nest, A. Miyake, W. D¨ur, and H.J. Briegel, Phys.Rev. Lett. 97, 150504 (2006). M. van den Nest, W. D¨ur, A. Miyake, and H.J. Briegel, quant-ph/0702116. M. Fannes, B. Nachtergaele, and R.F. Werner, Commun. Math. Phys. 144, 443 (1992); Y.S. ¨Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995); U. Schollw¨ock, Rev.Mod. Phys. 77, 259 (2005); D. Perez-Garcia, F. Verstraete, M.M. Wolf, and J.I. Cirac, quant-ph/0608197; J. Eisert, Phys. Rev. Lett. 97, 260501 (2006). D. Perez-Garcia, F. Verstraete, M.M. Wolf, and J.I. Cirac, Quant. Inf. Comp. 7, 401 (2007). F. Verstraete and J.I. Cirac, cond-mat/0407066; S. Richter (PhD thesis, Osnabr¨uck, 1994), supervised by R.F. Werner; F. Verstraete, M.M.Wolf, D. Perez-Garcia, J.I. Cirac, Phys. Rev. Lett. M. Popp, F. Verstraete, M.A. Martin-Delgado, and J.I. Cirac, Phys. Rev. A 71, 042306 (2005). B. Schumacher and R.F. Werner, quant-ph/0405174. D.L. Zhou, B. Zeng, Z. Xu, and C.P. Sun, Phys. Rev. A 68, 062303 (2003). M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, (2000); J. Eisert and M.M. Wolf, Quantum computing, in Handbook of nature-inspired and innovative computing (Springer, New York, 2006). D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, quant-ph/0405098. S. Bravyi and R. Raussendorf, quant-ph/0610162. F. Verstraete, M.A. Martın-Delgado, and J.I. Cirac, Phys. Rev. Lett. 92, 087201 (2004). P. Cvitanovic, Phys. Rev. D 14, 1536 (1976); R.B. Griffiths, S. Wu, L. Yu, and S.C. Cohen, Phys. Rev. A 73, 052309 (2006). W. Dur, L. Hartmann, M. Hein, M. Lewenstein, and H.J. Briegel, Phys. Rev. Lett. 94, 097203 (2005); S. Anders, M.B. Plenio, W. D¨ur, F. Verstraete, and H.-J. Briegel, ibid. 97, 107206 (2006). A.Y. Kitaev, Ann. Phys. 303, 2 (2003). F. Verstraete, M.M.Wolf, D. Perez-Garcia, and J.I. Cirac, Phys.Rev. Lett. 96, 220601 (2006). J. Eisert, K. Jacobs, P. Papadopoulos, and M.B. Plenio, Phys. Rev. A 62, 052317 (2000); D. Collins, N. Linden, and S. Popescu, ibid. 64, 032302 (2001); D. Gottesman, The Heisenberg Representation of Quantum Computers, in S.P. Corney et. al. Eds., Proc. XXII Int. Coll. Group Theor. Meth. Phys. (International Press, Cambridge, 1999); J.I. Cirac, W. Dür, B. Kraus, and M. Lewenstein, Phys. Rev. Lett. 86, 544 (2001). F. Verstraete, private communication. K. Kieling, T. Rudolph, and J. Eisert, quant-ph/0611140. G. Grimmett, Percolation (Springer, Berlin, 1999). J.Walgate, A.J. Short, L. Hardy, and V. Vedral, Phys. Rev. Lett.85, 4972 (2000). J. Eisert, Phys. Rev. Lett. 95, 040502 (2005).
Collections