Arrieta Algarra, José María y Rodríguez Bernal, Aníbal (2004) Localization on the boundary of blow-up for reaction-diffusion equations with nonlinear boundary conditions. Communications in Partial Differential Equations, 29 (7-8). pp. 1127-1148. ISSN 0360-5302
![]() |
PDF
Restringido a Sólo personal autorizado del repositorio 278kB |
URL Oficial: http://www.tandfonline.com/doi/full/10.1081/PDE-200033760
URL | Tipo de URL |
---|---|
http://www.tandfonline.com/ | Editorial |
Resumen
In this work we analyze the existence of solutions that blow-up in finite time for a reaction-diffusion equation ut−Δu=f(x,u) in a smooth domain Ω with nonlinear boundary conditions ∂u∂n=g(x,u). We show that, if locally around some point of the boundary, we have f(x,u)=−βup,β≥0, and g(x,u)=uq, then blow-up in finite time occurs if 2q>p+1 or if 2q=p+1 and β<q. Moreover, if we denote by Tb the blow-up time, we show that a proper continuation of the blow-up solutions are pinned to the value infinity for some time interval [T,τ] with Tb≤T<τ. On the other hand, for the case f(x,u)=−βup, for all x and u, with β>0 and p>1, we show that blow-up occurs only on the boundary.
Tipo de documento: | Artículo |
---|---|
Palabras clave: | reaction-diffusion; blow-up; nonlinear boundary conditions; heat-equations; parabolic equations; positive solutions; uniqueness; attractors |
Materias: | Ciencias > Matemáticas > Ecuaciones diferenciales |
Código ID: | 17898 |
Depositado: | 23 Ene 2013 08:51 |
Última Modificación: | 12 Dic 2018 15:07 |
Descargas en el último año
Sólo personal del repositorio: página de control del artículo