Universidad Complutense de Madrid
E-Prints Complutense

The Radon-Nikodým theorem in bornological spaces. (Spanish: El teorema de Radon-Nikodym en espacios bornológicos).

Impacto

Downloads

Downloads per month over past year



Bombal Gordón, Fernando (1981) The Radon-Nikodým theorem in bornological spaces. (Spanish: El teorema de Radon-Nikodym en espacios bornológicos). Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid, 75 (1). pp. 139-154. ISSN 0034-0596

[img] PDF
Restringido a Repository staff only

644kB

Official URL: http://www.rac.es/4/4_7_1.php?pid=Revistas:REV_20091030_00425&pageNum=1


URLURL Type
http://www.rac.es/0/0_1.phpOrganisation


Abstract

The author presents some Radon-Nikodým theorems—i.e., if (Ω,Σ,μ) is a finite measurable space and m is a μ -continuous vector measure then {m(A)/μ(A):A∈Σ} being compact in some sense implies that m is an integral. Theorem 6: One has a Radon-Nikodým theorem for Fréchet spaces. Theorem 8: One has a Radon-Nikodým theorem for vector measures of finite variation and for a quasicomplete space E with the metrizable Pietsch property. (E is said to have the metrizable Pietsch property if X⊂E N with ∑p(x n )<∞ for each (x n )∈X and each continuous seminorm p implies the existence of a B , B⊂E , absolutely convex, bounded and metrizable, with gauge P B , and such that ∑P B (y n )≤1 for each (y n )∈X .) G. Y. H. Chi proved this result [Measure theory (Oberwolfach, 1975), pp. 199–210, Lecture Notes in Math., 541, Springer, Berlin, 1976; with a compactness hypothesis for m(A)/μ(A) , instead of weak compactness. Unfortunately the proofs are not quite clear or even quite exact. In the reference to the Grothendieck book there is a B instead of an 8.


Item Type:Article
Uncontrolled Keywords:bornological spaces; Radon-Nikodym theorem
Subjects:Sciences > Mathematics > Topology
ID Code:17976
Deposited On:25 Jan 2013 09:41
Last Modified:02 Aug 2018 07:50

Origin of downloads

Repository Staff Only: item control page